
The Case for Bi-Lateral End-To-End Strong Authentication
by

C. Chandersekaran, Institute for Defense Analyses
William R Simpson, Institute for Defense Analyses

In certain enterprises, the network is continually under attack. An example might be a
banking industry enterprise such as a clearing house for electronic transactions, defense
industry applications, even credit card consolidation processes that handle sensitive data
both fiscal and personal. The attacks have been pervasive and continue to the point that
nefarious code may be present, even when regular monitoring and system sweeps clean
up readily apparent malware. This Omni-present threat leads to a healthy paranoia of
resistance to observation, intercept and masquerading. Despite this attack environment,
the web interface is the best way to provide access to many of its users. One way to
continue operating in this environment is to not only know and vet your users, but also
your software and devices. Even that has limitations when dealing with the voluminous
threat environment. Today we regularly construct seamless encrypted communications
between machines through SSL or other TLS. These do not cover the “last mile”
between the machine and the user (or service) on one end, and the machine and the
service on the other end. This last mile is particularly important when we assume that
malware may exist on either machine, opening the transactions to exploits for eaves
dropping, ex-filtration, session high-jacking, data corruption, man-in-the-middle,
masquerade, blocking or termination of service, and other nefarious behavior.

To counter this we devise a system where all active entities (users, devices, and services)
are named, registered and credentialed. We assume a single domain or at least a single
enterprise where we have control of these details, but will address a federated case later.
Credentials include asymmetric encryption keys. All services and devices exercise
access controls and use SAML Assertions in their decision process. The requestor will
not only authenticate to the service (not the server or device), but the service will
authenticate to the requestor. The interface is termed a “Fat” API, or in the case of a
browser or presentation system it is a “fat” browser. In the figure below we show the
constituent makeup of a service.

Figure 1 Components of a Service

Fat API
Access Decision

Service to
Service

Interface

Service
Logic

The FAT API must be plug compatible with the Fat Browser and the Service-to Service
Interface as shown in the next figure. It is therefore important that these exercise
compatible code segments.

Access Decision
Fat API

Service to Servic e
Logic Service

Interface

Access Decision
Fat API

Service to
Service

Interface

Service
Logic

Service A

Service B

Fat Browser

Figure 2 Fat Interfaces Must be Plug Compatible

In the figure below we show two types of Services. The first is an Aggregation Service.
This Service calls exposure services aggregates their output and returns the data to the
user. The second is an Exposure Service that provides data from an authoritative data
source. The “fat” Service call is different between services than between browser and
service. The “fat” APIs will also be different for different environments (e.g., .NET or
J2EE). The “fat” part of the API consists of:

• Port Listener
• (save data input)
• Bi-lateral End-to-End Authentication
• Consume the assertion package for authorization
• Pass Authorization credentials and initial input to the service

The initiating part on the “Fat” Browser and the Service-to-Service invocation must meet
the compatibility issues.

Fat Browser

User at a
Browser or
Presentation
System

Aggregation
Service

Exposure
Service

Exposure
Service

User
Devise

Fat API
Access

Decision

Service
Logic

Fat API

Access
Dec.

 Fat API

Access
Dec.

Ser. Logic

Service to
Service Interface

SSL Pipe
(RED)

With Secure
Message

Flow Inside

Ser. Logic

Figure 3 The Steps in Invoking an Aggregation Service

This two way authentication avoids a number of threat vulnerabilities. The requestor will
initially authenticate to the server or device and set up an SSL connection to begin
communication with the service. The primary method of authentication will be through
the use of public keys in the X.509 certificate, which can then be used to set up encrypted
communications, (either by X.509 keys or a generated session key). Session keys and
certificate keys need to be robust and sufficiently protected to prevent malware
exploitation. The preferred method of communication is secure messaging, contained in
SOAP envelopes.

Several key pieces are missing to complete this scenario. On the user end we need WS-
enabled browser with the ability to communicate with an ID processor and a Security
Processor which together form a Security Token Server (STS). The STS will facilitate
the exchange of credentials, aid in setting up the initial SSL, and provide the SAML
package for consumption. The fat browser may be on a desktop or a mobile device. On
the service provider end we need the software to encrypt/decrypt secure message and to
consume the SAML package. The latter is not trivial since it must be checked for
signature, tampering, timeouts and other factors. If we assume for the moment that the
user is tightly bound to the browser, then the user security context is maintained through
the device and all the way to the service. This context will assist in attribution and
delegation and in monitoring insider behavior activity. The remaining threats of insider
activity, ex-filtration of static data and denial-of service (DOS) attacks must be handled
by other means, but behavioral modeling, static encryption and dynamic ports and
protocols still apply to these threats. Both the fat browser and the fat API are under
development.

Several additional features of the STS are needed which the OASIS standards have not
addressed. When the communication is across domains, then and STS in each domain is
needed and a mutual recognition of signature authority is needed. If they are across
enterprise we may need to do a remapping of the SAML assertions, and we need a good
process for least privilege, delegation and attribution in each of these circumstances.
While WS-Federation standards assist; they do not specifically address attribute pruning,
remapping, or multiple STS registered recognition.

The process is not without draw-backs, in that additional cycles are used in the bi-lateral
authentication and the double encryption (both SSL and secure messaging). This latter
makes it unattractive for some applications where the threat environment is minimal.
However, there exist a number of environments where the added security is worth the
cycles, or where higher performance cores are available.

