
Security challenges for internet technologies on mobile devices
- Geir Olsen [geiro@microsoft.com] , Senior Program Manager for Security – Windows Mobile,

Microsoft Corp.

- Anil Dhawan [anild@microsoft.com], Program Manager for Internet Applications – Windows

Mobile, Microsoft Corp.

The number of smart phone devices capable of offering Internet technology and experiences rivaling

desktop computer standards is growing at a fast pace. Security and Privacy concerns for mobile devices

rival or go beyond similar concerns for laptop computers as mobile devices are even more mobile by

nature and are less likely to be “managed” by an IT organization.

In this paper we will discuss the challenges that exist and outline a set of principles and ideas we will use

to frame a discussion on how to address security and privacy in the realm of Internet technology on

mobile devices.

The paper will focus discussion on traditional web sites, web applications and “Widgets”.

A web page can contain content from multiple sources (or software publishers); scripts download from

these sources and execute concurrently in the web browser. Web browsers offer increasingly rich

programming models and execution environments with some exposing programming abstractions for

core operating system and device services like location services and camera.

Widgets are considered user experiences developed using web technologies and are typically installed

to run locally from the device. The widget framework offers its own programming model rooted in the

browser document object model coupled with interfaces that offer access to core operating system

services such as HTTP/HTTPS/TCP, location services, and others.

Mobile operators and mobile device operating system vendors have security and privacy concerns for all

software running on their devices. They often make no conceptual distinction between scripts running in

the context of a browser and traditional software installed on the device.

mailto:geiro@microsoft.com
mailto:anild@microsoft.com

Mobile operators, device manufacturers, and software vendors are

making attempts at formulating security architectures for mobile code.

Examples include the MIDP 2.0 security architecture and the OMTP

application security framework. We see benefit from standards bodies

working to minimize security and privacy risks for Internet technologies

on mobile devices.

The Questions that need answers
1. How are Web page scripts and Widgets different from “native” applications?

2. What are the criteria for assessing trust?

3. What are the key elements of risk management and mitigation?

4. How should code identity be securely issued, managed and verified?

5. How should intent of code be disclosed and discovered?

6. What does it mean to act on intent, reputation and reliability information?

7. How should device capabilities be defined and discovered?

How are Web page scripts and Widgets different from “native” code?
Code downloaded and executed in the context of web pages and in web browsers differ from native

applications as follows:

1. Deployment model: Scripts typically load and run with the web page which are downloaded or

deployed from web servers. Scripts on a single web page can originate from many sources.

There is no commonly accepted standard for assigning software identity to web page scripts.

2. Available Programming Model: Scripts downloaded in the context of a web page will have the

DOM available through which the scripts gain access to browser and system resources. The

trend is toward richer programming models providing access to an increasing number of OS and

device services.

3. Security Model: Traditional software applications installed on a device has an assigned identity

through which the code is awarded capabilities. There is no such model for scripts running in the

context of a web page. In the case of native code the identity is typically traceable to the issuing

authority of a digital certificate. There is no such widely accepted technology available to script

running in a browser. Instead scripts are constrained by the object model and programming

model they have at their disposal. Some OS security models allow for self-disclosure of intent

through manifests. There is no similar infrastructure in web browsers.

It is expected from developers and open web sites alike that the user should be able to navigate from

one end of the web site to another without being interrupted by security prompts. This is largely the

case with the exception of those sites reliant on locally installed components to do their work.

What are the criteria for assessing trust?
What constitutes the criteria for assessing risk and/or trust for a software running on a device? In

extensible software systems the degree to which a software component can be trusted is determined

by:

1. The system’s ability to securely associate the software’s identity with a trusted authority

2. The system’s ability to securely discover the software’s intent

3. The system’s ability to discover and act on intent, reputation and reliability information

related to the software

4. The system’s ability to provide a least privilege environment for the software

5. The system’s ability to isolate the software from other software on the device

6. The system’s ability to securely and in a timely fashion correct/ remove the software if

needed

Some of these criteria are related to the software designed to run on the mobile device, others to the

OS and the device, and others again to the deployment pipeline.

Risk Factor High Risk Low Risk Comment

Identity Unverifiable Verifiable

Intent
(publisher)

Undiscoverable Discoverable

Intent
Discovery and
Response
(device)

Broad Access Custom
Sandbox

The risk is lower if device architecture can act on
discoverable intent

Publisher
Reputation

Low High

Publisher Title
Reliability

Low High A publisher can distribute many solutions. While
previous “reputability” measure is related to
publisher directly. This measure is related to a
particular title or solution.

Isolation No Isolation Isolated This relates to the device’s ability to isolate one
publisher’s solution from another

Revocation/
Blocking

No revocation/
blocking
capabilities

Revocation
and Blocking
capabilities

Security risk assessment based on criteria outlined above does not distinguish between applications

installed on the device or scripts running in the context of a browser session.

How can code identity be securely issued, managed and verified?
Some mobile devices require that code be signed before it is allowed to execute. This requirement is

typically not associated with web page scripts and widgets. The degree to which a digital signature is

used differs from platform to platform. The Android platform requires signatures, but certificates used

for signing can be self-signed.The iPhone platform requires code to be signed twice (first with developer

certificate, secondly with app store certificate) before it can be sold in the Apple AppStore. The iPhone

authenticates code based on code identity and has or uses tamper proofing and revocation capabilities.

Windows Mobile does not require all applications to be signed; only when certain capabilities are used is

the requirement in place. Microsoft uses different certificate types to distinguish trust level at which the

signed software can run. Windows Mobile authenticates code identity at run-time and has tamper

proofing and revocation features. Unsigned code can run on Windows Mobile devices, but run at the

lowest privilege level.

Code identity for scripts running in the context of a web page can be based on hash value of script or

can be inferred from the URL and a trusted certificate associated with the domain the script was loaded

from. Scripts on a web page can in turn load and execute scripts from other domains. Each such script

can access local device services like the location API. For privacy and usability reasons it is important

that unique identities can be securely inferred by these services from the execution context to prevent

excessive user prompting and/ or access to services by un-trusted scripts.

Code identity and code identity authentication are key elements of a device security and trust model.

How can intent of code be disclosed and discovered?
One element of risk posed by a software component can be derived from what capabilities the software

component needs to offer all of its use cases. In most current software systems such intent is not

disclosed and thus cannot be discovered or acted on. The .NET Framework introduced declarative

security when it was initially released. It is possible in .NET to discover a software component’s security

intent and to act on that intent. The Android and Symbian platforms offers no special capabilities to a

software component that does not disclose intent and provides a least privilege environment for

software that does.

The ability to declaratively disclose intent is one area of interest where we see standards being

developed.

What does it mean to act on intent, reputation and reliability information?
If an application discloses intent in the form of a list of required capabilities, how should a device

security platform act on that information? Software self-disclosure information can be used in the

following ways (not an exhaustive or prioritized list):

1. The information can be disclosed to a user at install time to empower the user to make a more

informed decision when deciding for or against installing the application.

2. The disclosure information can be used to create a least privilege environment for the software,

an environment where only capabilities requested is granted.

3. The information can be used in the deployment pipeline as input to the risk and risk mitigation

elements of that pipeline. Higher risk is associated with a greater expressed need for

capabilities. Higher risk software normally takes a different path through the deployment

pipeline involving testing to ensure the software meets a higher quality bar.

In regards to “reputation” and “reliability” information we are talking about defining and building public

or commercial infrastructure to support aggregation of “reputation” or “reliability” related information.

Many shopping sites have reputation related rankings, stipulated from customer input. Reliability

related information could include the ability to have software tested and then signed by a testing

authority. We should think about allowing the inclusion of reputation and reliability “claims” in the

application manifest. This type of information would allow mobile operators and IT the ability to define

what level of risk they are willing to accept on some or all of their devices. Government agencies

sometimes have strict secrecy and privacy requirements, while on the opposite end of the spectrum

some consumer are willing to take risks to gain functionality. A solution that allows the owner of the

device flexibility when making risk management decisions is ideal.

It is imperative to find the right balance between our ability to better protect end users and

organizations against security and privacy threats and proving ample room for software developers to

innovate and without hampering their time to market requirements. It is also essential that our quest

for security does not negatively impact the user experience.

Mobile operators differ on willingness to take security and privacy risk. Current software development

models thus face the issue of platform fragmentation. If one mobile operator defines risk and signing

requirements at level A and another mobile operator defines risk and signing requirements at level B,

the ISV risk having to create two binaries and having to put the two binaries through two different

certification schemes. This adds unnecessary bureaucracy. If we rather could define a standard method

of disclosing intent and classifying security risks and mitigations and handle risk mitigation in the

deployment pipeline it is possible that developers would largely remain unaffected.

How can device capabilities be defined and discovered?
The ability to discover available capabilities is an element of a disclosure and consent framework.

Disclosure and consent is terminology often used in relation to Privacy requirements.

A manifest document might contain a series of capability assertions that an implementation can process

to impart trust/authorization. A central challenge here is coming up with a common schema with an

appropriate level of granularity to selectively allow/revoke privileges based on various criteria.

Trust
Trust is viewed as the overarching objective of most security models. Trust is also a key element of

usability. Before an end user can benefit from the value proposition offered by a software solution the

user must first trust themselves with the device enough to explore. A well crafted user experience can

help by responding in ways aligned with expectations of user. Best possible security is achieved when

devices behaves according to users’ expectations, while maintaining device integrity, protecting users,

device and network assets with the highest possible degree of discretion. A user is often left feeling less

secure when confronted with signs of security risk even when the user is confronted with a security

component developed to protect the user in some way. In general everyone wants to be secure, but no

one likes to deal with security directly.

Risk Management
Security is risk management. With little risk the need for security measures is low, and conversely with

great risk the need for security measures is high. Accurate measures of risk are essential for effective

enforcement of security.

All major vendors of mobile device operating systems are developing and evolving security models that

to some degree already factor in the elements outlined above. The challenges are many. Challenges

already confronted by desktop and server operating systems are becoming increasingly relevant for

mobile devices as well.

Transparency & Prevention
End users are often asked to make security decisions with little or no information about the application

at hand. On many devices applications or services are installed after a user has downloaded application

setup files to their device. People make better decisions when better informed. Prevention is an area

that is largely overlooked in regards to opportunity to prevent end users from making bad security

decisions. More transparency is needed; we need to know more about a software publisher and the

software publisher’s track record/ reputation. Alternatively or additionally it would be desirable to

disclose a measure of security risk regarding a piece of software before the software is downloaded to a

user’s device.

Many current smartphone users buy applications for their phone on the Internet. These applications are

bought from one of many Internet stores that sell smart phone software. The most popular of these

sites, for example Handango, offer rating based on user reviews, but no other information that indicates

to what degree the software solution poses a security risk to the end users device. Greater transparency

is needed from software publishers to allow Handango and other access to security risk information.

Security risk information associated with a software solution should be published with the title to allow

the curious end user the ability to browse such information enabling make more intelligent decisions.

Trustworthy User Experiences
Studies show end users as poor decision makers in relation to decisions on security and privacy. Even

with blinking banners warning them of not entering their credentials on a web form, many users still do

it. A lot of work is needed to develop trustworthy and consistent user experiences across software

solutions. A more streamlined and contextual disclosure and consent experience is one element of such

a strategy. Street signs are standardized in many countries in the world, better and standardized visuals

used in the disclosure user experience will over time make it easier for users to make educated

decisions. Additional metadata in the form of software disclosure statements will provide additional

data allowing a better basis for end users explicit consent scenarios.

Disclosure and Consent
Disclosure and consent is often used in the context of privacy to describe the process of obtaining user

consent to collect and share personally identifiable information. Prominent disclosure refers to a user

experience where the end user prompted prominently about an impending privacy sensitive operation.

Consent refers to the end user’s affirmative feedback on the disclosure. For example, an application may

have built in a prominent disclosure that prompts the end user before their email address is sent to the

software publisher, informing the user what is about to happen and asking for the user’s permission

(consent). If the end user provides such consent, the data is sent. If the consent request is declined, the

application does not send the data.

Asking end users to make security decisions is often fraught with problems as many end users get

confused about security questions and could easily make mistakes. Implicit consent is therefore another

alternative that should be explored. Such implicit consent could be made in an automated fashion if:

1. The end user has previously agreed to allow such actions, in a more general form or for this case

specifically

2. The administrator in charge of managing a device, such as the end user’s employer, has issued

policy that provides implicit consent for this type of operation

3. The end user has provided general guidance through control panel actions to allow software of a

certain class or type free reign, or permission to perform this type of operation

4. The device policy coupled with trust associated with software publisher’s or application is

sufficient to provide implicit consent for operation

Disclosure and consent should also be considered at a technical level. The software itself can disclose

intent through embedded manifests. An application can contain a signed manifest that discloses the

capabilities the applications intends to use. The device security system can inspect the manifest

evidence and decide if and where the application can run. Device security prevention and enforcement

infrastructure can inspect policy and the application’s manifest to determine if and where the

application software can run. If the application contains a manifest that expresses intent the device can

make a decision based on configured policy and ask end user’s input when needed.

Enforcement
The run-time enforcement architecture provides the most important and often the weakest element of

the end to end security story. History shows that if malicious software makes it onto a machine or

device it often is able to break out of its enclosure to take control. Least privilege and isolation are two

important security principles that if incorporated can help the scale tip in the other direction. A software

module that is loaded to execute should ideally be loaded into an execution environment where only

requested and assigned capabilities are present. If a software application only needs the ability to

visualize information received from a web service the application should run in an execution

environment where only network and display capabilities are present. This will satisfy the least privilege

requirements. Isolation is achieved when a software solution is isolated from other software solutions at

run-time. The isolation will ensure that a malicious application can do minimal damage to other

concurrently running software.

Correction
“Block lists”, “allow lists” and revocation mechanisms are common correction mechanisms on mobile

devices. Applications on the block list, or those not on the allow list, are prevented from running.

Revocation provides a secure method of preventing software from running.

Implementations
Implementers should be afforded enough flexibility to enable trustworthy user experiences that are

consistent with their client platform needs. For example, the disclosure and consent for device access

within a Web/Widget context would ideally follow the native platform’s user experience to help provide

a trustworthy user experience. The set of standards would provide a shared foundation as described

above while still enabling user experience integration and differentiation of the implementation.

At the same time, it is critical that the tactics involved in describing/invoking a security framework be

done in a manner consistent with the Web programming paradigms. The adoption and success of a

security framework in this space is gated on developers feeling comfortable and not over-burdened

while building experience that leverage these frameworks.

Standards
In summary, we believe standards are needed for the following areas:

1. Code Identity

2. Declarative Self-Disclosure of Security Capability Needs

3. Disclosure and Discovery of device capabilities

4. Risk assessment criteria

5. Risk level definitions and symbols

6. Risk Mitigation Approaches & Quality Standards

