Page 1 of 4

W3C Workshop on Security for Accessto
Device APIsfrom the Web - Position Paper

Olli Immonen plli.immonen@nokia.com

Security model for browsing and widgets

It has been common to think that the security méatedlevice APl access, involving also related
user experience aspects, is somewhat differentiftgets and for browsing. In browsing, users are
used to feel relatively safe without thinking toach about trustworthiness of the sites they browse.
Something bad might happen if you download codecddfse one must think before entering
private data. But just browsing and entering samm@cent data should be safe. For widgets, the
situation is somewhat different. User should thitiether to take a widget into use. That is why it
would be easier to grant more powerful device act@svidgets.

On the other hand, there might be a widget thatipuglements an entry point to a service. All code
is fetched from a web site. Or, a browsing booknmagy be presented so that the user experience is
quite similar to that of a standalone widget. Tikig/hy it useful to consider both cases in order to
create a maximally uniform solution.

| dentification
How to identify the entity allowed to certain acg@©ptions include

o Site (2nd level (base) domain, full domain, fulteeks)
« Name of the responsible entity like the DistingeidiiName (DN) from a certificate of a TLS
server or software signing entity (widget or welygacript).

The user obviously should understand the meanitigeoidentity in order to grant access. However,
studies related to phishing attacks indicate tsatsiusually doot understand URLs even if they

to. It is questionable how useful it is to identihe site (e.g. DNS name) to the user. "This site”
"This page" might be effectively as good, or evieiryg that the user understands (or bothers to
read).

Authentication and authorization

How strongly does the entity need to be identifethienticated. Options include

o No authentication, i.e. just DNS
e TLS (https)
¢ Signed scripts (of web pages) or widgets

Anything besides just DNS would be somewhat of @alenent issue. SSL/TLS itself is widely
deployed but without a controlled certificate igst@ process its value is limited. One can argue tha
TLS does not really protect against phishing sencerage users can't reliably tell if TLS is used or
not, and sending user input to non-TLS sites maxadd. For controlling device APIs, TLS could
actually be helpful, if the platform would requiféS being used for certain APl access, possibly
with some requirements regarding site certificapoocesses (CAS).

Signing work: in closed systems like intranets but in the opg@rnet it is problematic, least if it

05.11.2008



Page 2 of 4

is based on users understanding the PKI and igeniitvolved. Al approval type of signing whe
the signing entity guarantees not just the idemtitthe provider (developer) but the trustworthses
of the code, might not be robust enough.

Whitelist and blacklists, possibly based on sie'siidget developer's reputation within a
community, are an interesting option here.

Following theprinciple of least authority (POLA), only those rights should be granted that a
absolutely necessary. There are several ways tbthemaccess right

less features (e.g. just READ instead of READ&WRITE

limited time (one-shot, session, time period)

measurement accuracy (e.g. location accuracy)

scope (e.g. access to just one person insteadicd address book)

implicitly controlled access (e.g. Ul to selecila fo to upload, see more below)

For a user, in principle it would be easier to de&s rights to entities thhge/she is not ready to trt
fully. On the other hand, controlling things in @iémay become laborious and lead to unpleasant
user experience. So, services would be temptesktfoa "full" rights and users to grant them even
in cases they actually should not.

Policy

A policy language could be able to describe allgdheve options. It could be useful for an
organization (corporate IT, telco operators). Anywat some point thpolicy should be presentec
users. What should be visible as choices?

e Option 1
o Defining which are the "highly trusted" entitiesési, and "moderately trusted"
o What is allowed to "highly trusted"” sites and tooterately trusted" sites

e Option 2
o Explicitly allowing each entity/site those rightsieeds and should have

The advantage in option 1 is treatthorization is less cumbersome. The questi@msover is shorte
("trust or not"). Risky APIs and combinations canldetter taken into account when setting policies.

The advantage in option 2 is that question to angsu@ore concrete and so easier to understand.
Also, it is better aligned with POLA.

Declaring rights

Does the widget or the web page need to declamrdieind which kind of rights it will need? Or, is
all this done on the fly, when actual API call ased.

Declaring has been seen useful for MIDP applicatimmd same applies probably web widgets. The
decision about granting necessary rights is tylyicabde when the application is installed or when
it is started, anyway before the user has seeagpkcation doing anything.

The benefit of declaration approach is that artyen@in declare minimal rights (POLA!). Even if
something goes wrong (e.g. site gets X#&cked) the damage is limited to declared righése we
assume that changing the declaration is harderdhanging the code (like using XSS and eval()).
This can be achieved by signing the rights dedtardor widgets

05.11.2008



Page 3 0of 4

But would declaration be feasible for web browsiBgBides technic difficulties there ar:
application issues.

« How would the declaration be made harder to chémge the code. Signing a "site capability
certificate" could be possible but hard to deploy.
o From application logic point of view, it may be roptimal to declare the rights in advance

Attacksand risks

Besides attacks relying on technical issues (buiverflow etc.),application and user behavior le
attacks are of special interest here:

e User giving access unknowingly. The user is lured to giving access without nogamn
understanding what is happening, possibly as dtrestempting content.

o Impersonation. A malicious site masquerading a good one may aEEess to users
device. The situation is similar to phishing atekere users are lured to enter their sensitive
information.

o Vulnerablesite. If the site you trust to access your device isgtdble (to XSS or similar)
then your device will also be vulnerable. Aparinfrthe usual anti-XSS methods, one way to
deal with this is to grant only minimal access. iEEtisted entities should only ask and be
given rights they absolutely need.

It is impossible to foresee all risks. Risk asses#ns still beneficial in order to

o evaluate how well the system is able to deal withrisks identified
e see how serious the risks are; what if the systeis f

There are general risks and risks specific to édlh Risk analysis should be the basis for setting
the policy (and enabling an API in the first plgce!

Mashups

In mashups there are many entities involved. lheamttmashup web page the content comes from
multiple sources. Widgets (provided by a certaititgncan fetch content and code from multiple
entities that are possibly different fraime one providing widgets. This is challengingdontrolling
access to device APIs: Do all entities need talkatified, authenticated and given access rights
separately or would it be enough to rely on onéye(piage, widget)? The users might have the idea
about accessing a certain site (and be willingémigaccess to that) but in fact it might be anothe
entity (providing a script) that wishes to utilitee device API. Enforcing access control technycall
might take us to quite complex models like thoséawa 2 security where permissions of
components from various sources are analyzed iexbeution stack.

Implicitly controlled access

For many kinds of functionality it is possible tesiign a Ul that implicitly controls access to devic
APIs. In this case, no separate authorizationcesgary. Available techniques include

e HTML form input e.g.

o Reading a file from the file system (form input &yfiile")
e Special URL scheme

05.11.2008



Page 4 of 4

o Sending an em: (mailto:), making a phone call (te
e JavaScript APIs with a Ul
o crypto.signText, Ul for signing text using privaeys and certificates of the device

The same principle could perhaps be applied tordiRés as well e.g. (disclaimer: just examples)

o Camera (take a picture)
o Addressbook (select a person's email address)

The benefit of this approach is that no separattecaization is needed. Implicit authorization
(selecting a particular file) is easier to underdtthan a technical question ("do you allow the it
access your filesystem?"). Also, users are tenfastaclick yes to questions like like allow/not tha
are just hindering them from getting their job done

The drawback is that that this approach limits @magibn Ul design. And of course this approach is
hardly feasible for many features like

e continuous monitoring of a device parameter
e reaction to a device event (like receiving a phcal®

Exercise: Thermometer API

It is good to start from thinking something lestical...

Use case: A web site wants personalize product offeringsetheling on is it hot or cold out there, is
the device used inside or outdoors.

Continuous temperature monitoring would be an isgdi@le no actual risk can be thought about,
still: not every site should be allowed to montiioe user's personal space!

Implicitly controlled method. Platform-generated thermometer Ul: Clicking a twtis necessary
to measure the temperature. No separate accesslagsmeeded.

Continuous monitoring. An ad portal would really like to have this in erdo avoid unnecessary
user actions. This requires granting a permisston.everyday use, it should be granted "always".
For sites accessed seldom "session" might do. Rieggauthentication, just DNS would probably
be OK for this feature. Regarding the policy, "tagssites” should certainly have right to this
information. A bank, as a trusted site, would re# this information. But if it would, what would be
the risk...

Conclusions

There should be maximally uniform solution for d@/API access from widgets and
browsing

Declaring rights (and only those absolutely needesl)ld be a good practice
Enforcing access control for mashups requires tpkialtiple entities into account
APIs providin¢ implicitly controlled access are an interestingap

05.11.2008



