
Draft Draft

1

JSONiq: XQuery for JSON

Jonathan Robie
Matthias Brantner
Daniela Florescu
Ghislain Fourny
Till Westmann

Abstract
XML and JSON have become the dominant formats for exchanging data on the Internet, and applications frequently need to
send and receive data in many different JSON-based or XML-based formats. For XML data, a query language like XQuery can
be used to query data, create or update data, transform it from one format to another, or route data. Adding JSON support to
XQuery allows it to perform these tasks for both XML and JSON, combining data from multiple sources as needed.

JSONiq is a query language for JSON, based on XQuery. It is designed to allow an existing XQuery processor to be rewritten
to support JSON with moderate effort. One profile of JSONiq removes everything directly related to XML, adding JSON
constructors and navigation. Another profile of JSONiq includes the full XQuery language, with added JSON support, allowing
queries to consume or produce JSON, XML, or HTML.

1. Introduction . 1
2. JSONiq in a Nutshell . 1
3. Grouping Queries for JSON .. 2
4. JSON Views in Middleware . 3
5. JSON with XML and HTML . 4
6. Conclusion . 5

Bibliography 5

1. Introduction
XQuery is the standard query language for XML, and has been implemented in databases, streaming processors, data
integration platforms, application integration platforms, XML message routing software, web browser plugins, and other
environments. JSONiq makes it easy for an XQuery processor to support JSON in these same environments.

Currently, there is no standard query language for JSON, and many JSON programmers do not want the complexity of XML.
Because of the modular, compositional design of XQuery, it is easy to remove the XML-specific portions of the language, and
to add similar functionality for JSON. XQuery consists largely of XML constructors, XML path expressions, and expressions
for querying and transforming data, such as FLWOR expressions, that are not directly based on XML. One profile of JSONiq
removes everything directly related to XML, adding JSON constructors and navigation. The resulting language is simpler and
easier to optimize, and well suited to JSON views in middleware. But it includes sophisticated query capabilities, including
grouping and windowing, that are very useful in a JSON environment.

Another profile of JSONiq includes the full XQuery language, with added JSON support, allowing queries to consume or
produce JSON, XML, or HTML. XML continues to be widely used for data interchange on the Internet, and many applications
need to process both JSON and XML. XML has significant advantages for document data, is well supported by standards,
is part of a rich ecosystem of tools, libraries, and language extensions, and is required by many existing data interchange
standards. Particularly in applications where data resembles human documents, including many healthcare, financial,
government, intelligence, legal, and publishing applications, XML continues to have advantages over JSON — particularly when
document data needs to be queried. Adding the JSONiq extensions to XQuery allows queries to process or produce JSON,
XML, or HTML, combining and transforming data from any of these formats as needed. And adding JSON objects and arrays to
XQuery also allows provides these useful data structures to programs that process only XML.

2. JSONiq in a Nutshell
JSONiq adds constructors for creating JSON objects and arrays, and member accessors for navigating them. JSON
constructors look like JSON objects and arrays. For instance, the following query creates a JSON object for a social media site:

{
 "name" : "Sarah",
 "age" : 13,
 "gender" : "female",
 "friends" : ["Jim", "Mary", "Jennifer"]

JSONiq: XQuery for JSON Draft

2

}

JSONiq member accessors navigate JSON objects using the names of name/value pairs or the position of array items. For
instance, if the above object is bound to the variable $sarah, then $sarah("age") returns 13.

JSONiq allows expressions in JSON constructors in the same way that XQuery allows expressions in XML constructors. The
following JSONiq query creates a new user named "Jennifer", one year older than Sarah, with a friend list based on Sarah's.
Jennifer does not appear on her own friends list, but Sarah does:

let $sarah := collection("users")[.("name") = "Sarah"]
return {
 "name" : "Jennifer",
 "age" : $sarah("age") + 1,
 "friends" : [values($sarah("friends")) except "Jennifer", "Sarah"]
}

The result of the above query is:

{
 "name" : "Jennifer",
 "age" : 14,
 "friends" : ["Jim", "Mary", "Sarah"]
}

JSONiq also adds a few functions, including updating functions. But most of the power of JSONiq comes from the existing
XQuery language, which is well designed for transformations on hierarchical structures, well understood, and widely
implemented.

3. Grouping Queries for JSON
JSONiq allows the same functionality for JSON that XQuery provides for XML, except for functionality that depends directly on
the properties of XML. This includes joins, grouping, and windowing. This section demonstrates this using a grouping example
based on a similar example in the XQuery 3.0 Use Cases.

Suppose collection("sales") is an unordered sequence that contains the following objects:

{ "product" : "broiler", "store number" : 1, "quantity" : 20 },
{ "product" : "toaster", "store number" : 2, "quantity" : 100 },
{ "product" : "toaster", "store number" : 2, "quantity" : 50 },
{ "product" : "toaster", "store number" : 3, "quantity" : 50 },
{ "product" : "blender", "store number" : 3, "quantity" : 100 },
{ "product" : "blender", "store number" : 3, "quantity" : 150 },
{ "product" : "socks", "store number" : 1, "quantity" : 500 },
{ "product" : "socks", "store number" : 2, "quantity" : 10 },
{ "product" : "shirt", "store number" : 3, "quantity" : 10 }

We want to group sales by product, across stores.

Query:

{
 for $sales in collection("sales")
 let $pname := $sales("product")
 group by $pname
 return $pname : sum(for $s in $sales return $s("quantity"))
}

Result:

{
 "blender" : 250,
 "broiler" : 20,
 "shirt" : 10,
 "socks" : 510,
 "toaster" : 200
}

Now let's do a more complex grouping query, showing sales by category within each state. We need further data to describe the
categories of products and the location of stores.

collection("products") contains the following data:

Draft JSON Views in Middleware

3

{ "name" : "broiler", "category" : "kitchen", "price" : 100, "cost" : 70 },
{ "name" : "toaster", "category" : "kitchen", "price" : 30, "cost" : 10 },
{ "name" : "blender", "category" : "kitchen", "price" : 50, "cost" : 25 },
{ "name" : "socks", "category" : "clothes", "price" : 5, "cost" : 2 },
{ "name" : "shirt", "category" : "clothes", "price" : 10, "cost" : 3 }

collection("stores") contains the following data:

{ "store number" : 1, "state" : CA },
{ "store number" : 2, "state" : CA },
{ "store number" : 3, "state" : MA },
{ "store number" : 4, "state" : MA }

The following query groups by state, then by category, then lists individual products and the sales associated with each.

Query:

{
 for $store in collection("stores")
 let $state := $store("state")
 group by $state
 return
 $state : {
 for $product in collection("products")
 let $category := $product("category")
 group by $category
 return
 $category : {
 for $sales in collection("sales")
 where $sales("store number") = $store("store number")
 and $sales("product") = $product("name")
 let $pname := $sales("product")
 group by $pname
 return $pname : sum(for $s in $sales return $s("quantity"))
 }
 }
}

Result:

{
 "CA" : {
 "clothes" : {
 "socks" : 510
 },
 "kitchen" : {
 "broiler" : 20,
 "toaster" : 150
 }
 },
 "MA" : {
 "clothes" : {
 "shirt" : 10
 },
 "kitchen" : {
 "blender" : 250,
 "toaster" : 50
 }
 }
}

4. JSON Views in Middleware
XQuery is used in middleware systems to provide XML views of data sources. Because JSON is simpler than XQuery, JSON-
based views are an attractive alternative to XML-based views in applications that use large scale relational, object, or semi-
structured data. JSONiq provides a powerful query language for systems that provide such views.

This example assumes a middleware system that presents relational tables as JSON arrays. The following two tables are used
as sample data.

Table 1. Users

userid firstname lastname

W0342 Walter Denisovich

JSONiq: XQuery for JSON Draft

4

userid firstname lastname

M0535 Mick Goulish

The JSON representation this particular implementation provides for the above table looks like this:

[
 { "userid" : "W0342", "firstname" : "Walter", "lastname" : "Denisovich" },
 { "userid" : "M0535", "firstname" : "Mick", "lastname" : "Goulish" }
]

Table 2. Holdings

userid ticker shares

W0342 DIS 153212312

M0535 DIS 10

M0535 AIG 23412

The JSON representation this particular implementation provides for the above table looks like this:

[
 { "userid" : "W0342", "ticker" : "DIS", "shares" : 153212312 },
 { "userid" : "M0535", "ticker" : "DIS", "shares" : 10 },
 { "userid" : "M0535", "ticker" : "AIG", "shares" : 23412 }
]

The following query uses the fictitious vendor's vendor:table() function to retrieve the values from a table, and creates an
Object for each user, with a list of the user's holdings in the value of that Object.

[
 for $u in vendor:table("Users")
 order by $u("userid")
 return {
 "userid" : $u("userid"),
 "first" : $u("firstname"),
 "last" : $u("lastname"),
 "holdings" : [
 for $h in vendor:table("Holdings")
 where $h("userid") = $u("userid")
 order by $h("ticker")
 return {
 "ticker" : $u("ticker"),
 "share" : $u("shares")
 }
]
 }
]

5. JSON with XML and HTML
When JSONiq is used together with the full XQuery language, it can be used to convert data from one format to another,
whether the formats use JSON, XML, or HTML. It can also be used to combine data from multiple formats, transform it, and
create a result in any desired format.

For instance, suppose the following JSON data needs to be converted to HTML:

{
 "col labels" : ["singular", "plural"],
 "row labels" : ["1p", "2p", "3p"],
 "data" :
 [
 ["spinne", "spinnen"],
 ["spinnst", "spinnt"],
 ["spinnt", "spinnen"]
]
}

The following query creates an HTML table from this JSON Object, using the column headings and row labels specified:

<table>
 <tr> (: Column headings :)
 {

Draft Conclusion

5

 <th> </th>,
 for $th in json("table.json")("col labels")
 return <th>{ $th }</th>
 }
 </tr>
 { (: Data for each row :)
 for $r at $i in json("table.json")("data")
 return
 <tr>
 {
 <th>{ json("table.json")("row labels")[$i] }</th>,
 for $c in $r
 return <td>{ $c }</td>
 }
 </tr>
 }
</table>

The result of the query is the following HTML table:

<table>
 <tr>
 <th> </th>
 <th>singular</th>
 <th>plural</th>
 </tr>
 <tr>
 <th>1p</th>
 <td>spinne</td>
 <td>spinnen</td>
 </tr>
 <tr>
 <th>2p</th>
 <td>spinnst</td>
 <td>spinnt</td>
 </tr>
 <tr>
 <th>3p</th>
 <td>spinnt</td>
 <td>spinnen</td>
 </tr>
</table>

6. Conclusion
JSON and Cloud-based computing have brought new challenges to the Internet. XML is no longer the universal data
interchange format once envisioned, but it is still widespread and XML-based services need to be used together with JSON-
based services and various other data sources.

XQuery is a powerful and mature query language that has been implemented in many environments. By adding a small number
of constructors and member accessors for JSON objects and arrays, JSONiq makes it possible for queries to consume,
combine, or produce data in any JSON, XML, or HTML format, converting among them as needed. Any existing XQuery
processor can add JSON support with moderate effort. Data integration was always an important application for XQuery, and
adding support for JSON allows XQuery to play well with both of the dominant data interchange formats on the Internet. Where
XML-based views of data such as relational databases are currently used, JSON-based views provide a simpler alternative.

In some implementations and environments, both JSON and XML will be supported. In other environments, only JSON support
will be provided for the sake of simpler, more easily optimizable implementations.

Bibliography
[JSONiq] JSONiq Language Specification1. Jonathan Robie. Matthias Brantner. Daniela Florescu. Ghislain Fourny.

[JSONiq Use Cases] JSONiq: XQuery for JSON, JSON for XQuery2. Jonathan Robie. Matthias Brantner. Daniela Florescu.
Ghislain Fourny.

[XQuery 3.0] XQuery 3.0: An XML Query Language. W3C Working Draft, 14 June 20113. World Wide Web Consortium . 16
November 1999.

1 http://jsoniq.com/docs/spec/en-US/html/index.html
2 http://jsoniq.com/docs/spec/en-US/html/index.html
3 www.w3.org/TR/xquery-30/

http://jsoniq.com/docs/spec/en-US/html/index.html
http://jsoniq.com/docs/spec/en-US/html/index.html
www.w3.org/TR/xquery-30/
http://jsoniq.com/docs/spec/en-US/html/index.html
http://jsoniq.com/docs/spec/en-US/html/index.html
www.w3.org/TR/xquery-30/

6

	JSONiq: XQuery for JSON
	Table of Contents
	1. Introduction
	2. JSONiq in a Nutshell
	3. Grouping Queries for JSON
	4. JSON Views in Middleware
	5. JSON with XML and HTML
	6. Conclusion
	Bibliography

