
Towards	a	Model‐Based	Characterization	of	Data	and	Services	Integration	 Page	1	

Towards	a	Model‐Based	Characterization	of	Data	and	Services	
Integration	

Paul	C.	Brown,	Principal	Software	Architect,	TIBCO	Software	Inc.	

Overview	
Data and services integration is an ongoing practical challenge in the IT world. In most situations today, it is very
much an ad-hoc exercise that relies heavily on human interpretation to get the job done. This is a shame, because
there is a lot of model-based standards work that, if appropriately combined and applied, could be leveraged to both
represent human understanding and potentially automate many error-prone manual development activities.

This paper examines data and services integration from three perspectives: data, services, and service utilization
context. Each perspective explores the realities that are encountered in the field.

Data	Realities	
Structure of Information: The information encountered in building real-world solutions generally has an inherent
network structure (Figure 1), yet most of the representations used for inter-component communications are tree-
structured (Figure 2a). These tree structures are subsets of the inherently network-structured information.
Complicating things, different interfaces often require different tree-structured subsets from the same core network
of information (Figure 2b).

Figure 1: Inherently Network-Structured Information

Customer Service Order Fulfillment Service

Product Service

Sales Order Service

-quantity
-price
-orderLineID
-/status

Sales Order Line Item

-quantity
-shipmentLineID

Shipment Line Item

-cardType
-cardNumber
-expiration
-cardholderName

Credit Card Info

-date
-orderID
-/status

Sales Order

-name
-customerID

Customer

-SKU
-description

Product

-shipmentID
-status

Shipment

Address

Address

Address Carrier

-shippedItem

-shipmentAddress

0..*1

-customerAddress

-trackingNumber

Carrier Shipment

Carrier Shipment

0..10..*
-billingAddress

-shippingAddress

0..*1

-substituteFor

0..*

0..1

-orderedItem 1

0..*

Towards	a	Model‐Based	Characterization	of	Data	and	Services	Integration	 Page	2	

Figure 2: Two Tree-Structured Subsets at Interfaces

This dichotomy extends to the technical representations of information used in solutions. Some of these
representations are inherently tree-structured, including XML, JSON, and file structures. Others, such as database
schema, handle network structures gracefully. The reality is that solutions need to deal with both kinds of
representations and to relate the information between them.

Canonical Data Structure Myth: One Size Does Not Fit All. The goal of canonical data structures is to minimize
the number of representations in use. Often this desire is interpreted to mean a single data representation, but in
reality this approach rarely works. Consider the representations of the Sales Order in the previous figures. In Figure
2a the entire Sales Order is represented, while in Figure 2b just the orderID appears as a field in the Shipment
Notice. Typically a solution will require at least three representations of an entity: a full representation, a minimal
representation (i.e. an identifier), and a human-readable minimal representation (i.e. an identifier and a human-
readable name or description). These three representations, of course, need to be related to one another.

Vocabularies Vary: It is common for different parts of the business to use different terminology for similar (if not
identical) concepts. The sales organization refers to products, often identified by SKU’s. Manufacturing refers to
assemblies and packaged products. Service refers to field-replicable units. In practice, it is unrealistic to try to drive
to a single set of terminology across an entire enterprise. Efforts to do so never converge, and thus never produce
useful results for the enterprise. The reality is that terminology varies, and the various terms need to be related to
one another.

Information is Often Distributed and Replicated: Of necessity, information is often distributed across different
components and portions of the information may be replicated (Figure 3). Such situations require the ability to refer
to the different instances of the information and the service design necessary to maintain the consistency of the
information.

+getOrder(request : Get Order Request) : Get Order Response
...

Sales Order Service Interface

+orderShipped(notification : Order Shipped Notification)
...

Sales Order Status Interface

b) orderShipped() Operationa) getOrder() Operation

Order Shipped Notification

-itemID : SKU
-quantity
-price
-/status

Sales Order line Item

Get Order Response

-itemID : SKU
-quantity
-orderLineID
-shipmentLineID

Shipment Line Item

-orderID

Get Order Request

-shipmentID
-dateShipped
-orderID

Shipment Notice
-datePlaced
-orderID
-/status
-customerID
-customerName

Sales Order

Address

1..*

-billTo-shipTo

Towards	a	Model‐Based	Characterization	of	Data	and	Services	Integration	 Page	3	

Figure 3: Replicated Information in Storage

Information Evolves: The set of information relevant to an enterprise evolves over time. While good analysis and
design result in most changes being additive in nature, nevertheless it must be possible to relate old and new
versions of data structures.

Service	Realities	
Vocabularies Vary: Service and service operation naming terminology tends to vary even more than for
information concepts and relationships. This terminology tends to reflect the usage of the service operations in the
business processes that they support. Some terms (create, read, update, and delete) tend to be heavily overloaded:
their meaning can only be made clear by considering the context in which the term is being used.

Many Service Operations are Not Pure Functions: Most high-value services manage things (generally
information). Thus defining the semantics of their operations requires relating the operation’s data structures not
only to each other (functionally) but also to the information statefully retained by the service (or its underlying
services).

Many Operations are Not Independent (Orthogonal): The operations of a service often have dependencies on
one another. Some of these constraints can be expressed as simple relationships between operations, such as the
constraint that an item cannot be read, modified, or deleted before it has been created. Others, however, require more
information to express. Consider the cancellation of a Sales Order, when business rules dictate that the order cannot
be cancelled after it has shipped (a reference to state information).

Services often contain cached data: Services often contain cached information – information for which other
components are the systems of record. The Sales Order Service’s references to Customer, Shipment, and Product in

Order Fulfillment Service

Sales Order Service Data Store

Product Service

Customer Service

-quantity
-price
-orderLineID
-/status

Sales Order Line Item

-quantity
-shipmentLineID

Shipment Line Item

-shipmentLineID

Shipment Line Ref

-cardType
-cardNumber
-expiration
-cardholderName

Credit Card Info

-customerID

Customer Ref

-shipmentID

Shipment Ref-date
-orderID
-/status

Sales Order

-SKU

Product Ref

-name
-customerID

Customer

-SKU
-description

Product

-shipmentID
-status

Shipment

Address

Address

Address

Carrier

-shippedItem

-shipmentAddress

-trackingNumber

Carrier Shipment

Carrier Shipment

0..10..*

-shippingAddress

-billingAddress

-customerAddress

-substituteFor

0..*

0..1

1 0..*

1
0..*

Towards	a	Model‐Based	Characterization	of	Data	and	Services	Integration	 Page	4	

Figure 3 are examples of this. In such cases it is necessary to be able to represent the fact that the returned
information is not the system-of-record’s golden version, but another copy that may be inconsistent under some
circumstances. Beyond this, in a complete service design it must be possible to represent the cache maintenance
strategy (a process) and the interfaces required to support it.

Services Evolve: As business requirements change, services evolve. To support this, it must be possible to
characterize different versions of interfaces and to relate the versions to one another.

Service	Utilization	Context	Realities	
Usage Scenarios: Services provide value only when they become a working part of one or more business processes.
As such, it is necessary to indicate the manner in which the service operations are intended to integrate into the
overall business process. When this participation involves multiple service interactions, it may be necessary to
represent the interactions at different levels of detail. Figure 4 shows such an overview for the Sales Order Service
participating in an order-to-delivery scenario. There is a need to show the required behavior under different
execution circumstances and, in the case of reusable services, different execution contexts.

Figure 4: Order-to-Delivery Overview Scenario Showing Sales Order Service Participation

Representations at a finer level of granularity may be required to show details. Figure 5 shows the placeOrder()
operation in context, indicating its observable actions and interactions with dependent services.

display checkout
page(s)

place order

display order
acceptance

Accepted?

Sales Order Service
Scope

record items
shipped

send order for
fulfillment

validate order
and obtain
payment

close order

record items
received

all received?

deliver items

report delivery

ship items

send delivery
notice

Customer Order Fulfillment ServiceWebSite Sales Order Service Carrier

shipment notice

delivery notice

goods

select checkout

receive goods

enter
addresses,

credit card info,
 submit order

print order

Yes

Yes

Towards	a	Model‐Based	Characterization	of	Data	and	Services	Integration	 Page	5	

Figure 5: Scenario Showing placeOrder() Interaction Details

Protocol Semantics: There are a number of protocols commonly used for inter-component communication. These
include REST, SOAP, XML over JMS, and file transfer, to name but a few. The communication interaction patterns
associated with these and other protocols need to be clearly understood by the service user. The behavioral
symptoms that occur under breakdown conditions need to be clearly understood as well.

Coordination: Service users (and service providers) need to understand the manner in which solution activity can
be coordinated with service activity. Coordination can vary from fire-and-forget interactions up through distributed
transactions. The coordination behavior under breakdown conditions (loss of a component, loss of a communication)
needs to be understood as well.

At the solution level, the means by which responsibility is handed off from one component to another must be
clearly understood. Part and parcel with this is the need to understand the ways in which component and
communications beakdowns can affect the handoff and whether or not work can be lost due to those breakdowns.

Summary	
Both service consumers and service providers need to clearly understand how a service is intended to fit into
solutions. This understanding ranges from data structures through interfaces up to service integration into solutions.
It requires understanding data at rest (i.e. state information) as well as data in motion. It requires understanding
service interfaces and the behavioral semantics of service operations. It requires understanding how service activity
can be coordinated with solution activity.

While it is possible to describe these things with human language, model-based approaches (done properly) provide
a more concise and precise approach. It is believed that existing UML and SBVR models, if integrated, are
sufficiently rich to represent many of the required structures and behavior, though extensions may be required to
represent mappings involving computations.

«structured»
for each item

validateProductID
(Product Query Interface::)

getCustomer
(Customer Query Interface::)

fillOrder
(Order Fulfillment Interface::)

save and acknowledge
order

obtainPayment
(Credit Interface::)

return
customer

information

save fill order
request

fill order

validate
product ID

charge
customer's
credit card

placeOrder
(Sales Order Service Interface::)

wait for response

service consumer Sales Order Service Order Fulfillment Service

 : Place Order Response

 : Place Order Request

Credit ServiceProduct Service Customer Service

