Towards a Proxy Architecture for Semantic Web Services
Eric Rozell, Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY

At the Tetherless World Constellation! (TWC), we have developed the S2S
framework! to serve as an integration point for various Web applications and
services. This framework was originally designed in the context of oceanography
for the purpose of creating customizable “data dashboards” that scientists could use
as a “one-stop shop” for their diverse data needs. The framework has since evolved
for the purposes of the Semantic eScience Frameworkiii project, and now provides a
common interface to multiple Web service standards with semantic annotation
capabilities, along with an extensible front-end architecture for combining Web
applications and services. We are also working closely with sub-groups of the
Federation of Earth Science Informatics Partners (ESIP)V to integrate our
semantically-enabled solution in their approaches to the federated search and data
discovery infrastructure evolving amongst Earth scientists. In this position paper,
we will discuss the importance of developing communication conventions or
protocols for “proxies” that utilize the Semantic Web Service layer and back up our
discussion with lessons learned from developing the S2S framework.

i‘-— ~
? “E*\\\ h s2s:ParameterDescription
| s2s:QueryInterface <—urc\ s2s:ParameterOptions
s2s:0penSearchService s2s:hasDefaultConfiguration ‘\
{DataTypeProperty)
s2s:hasDescriptionDocument 525:hasOutputFormat
rdfs ; -
(DataTypeProperty) dfs:seeAlso (ObjectProperty) 525:0utputFormat
T s2s:forParameter T
xsd:anyURI (ObjectProperty) $25:supportsOutputFormat
(ObjectProperty)
s2s:range "
— —
_ /\
s2s:hasDefaultWeight s2s:containsParameter 3. soe:forParameter / \ s hasG
N / s2s:hasGeneratorFunction
(DataTypiPlop@rty, (ObjectProperty) (ObjectProperty) are \ (DataTypeProperty)
/ \ v
52s:CustomParameter (s2s:parameterwidget) (‘s2siResuitwidget] / \

s2s:hasTemplate s2s:requiresScript $25:requiresStylesheet
(DataTypeProperty) are (DataTypeProperty) (DataTypeProperty)

PN
) &=))
(=) ()
Figure 1: The S2S framework ontology.

Standardized Communication Protocols for Abstract Services

How do you communicate with a Semantic Web Service (SWS)? In the context of the
S2S Framework, which has been implemented primarily for data and metadata
search, the communication requirement is simple; typically, transactions are
stateless, and only a communication protocol for Web service invocation is required.
S2S defines query interfaces, parameters, and outputs, which are analogous to
WSDL operations, inputs, and outputs, resp. (see Figure 1 for the S2S ontology

diagram). In order to invoke any Web service in S2S, we have developed a JSON
service, where the service, query interface and set of parameter values are specified
as input. The S2S back-end infrastructure then takes the submitted JSON, and sends
it to an appropriate adapter, which has been developed to communicate with a
specific Web service specification (e.g, SAWSDL, OpenSearch). Using the
combination of the S2S vocabulary and a simple communication protocol based on
JSON, we have developed an abstract interface for communicating with data search
services through an intermediate “proxy” service.

<uses>

S2S Knowledge Base ‘Sﬁséerver \

—
S28 S28

§25 Comp- |¢— <queries> Metadata Proxy

onent Index Service Service

<uses>

<indexes>

<<interface>>

SearchService
+getQuerylinterfaces()
+getSearchParameters()
+runQuery(query,parameters)

|
oo oooooood I e s A
| | |
| | |

'

1 :
OpenSearch SAWSDL
Service Service l:'
T T
| T
<uses> <uses>

"
Qs | wsot
Documents miz‘a’f nis Repositories
(XML) (XML)

<searches>

HTTP
Services

<links to> <describes>

Figure 2: The S2S server-side architecture.

Such a model for SWSs in general could increase the usability and adoption of the
abstract service layer. The success of Web service technologies, such as WSDL and
SOAP, can be partly attributed to the development of clients and service
development tools across many programming languages. Without a standard way
of communicating with SWSs, it is difficult to develop the kinds of clients and tools
that will expose SWSs to a wide audience. Consider OWL-SY, there are constructs for
defining groundings between the abstract profiles and processes, but the execution
of the groundings is left to the client or some service mediator. The argument here
is that the S2S framework has benefited from an intermediate “proxy” service that
performed all the necessary “groundings”. There is a need to develop such an
intermediate service for OWL-S, or any other SWS ontology, and to standardize how
clients communicate with that service. In addition to simplifying the development

of clients, the intermediate service provides a model for implementing of reusable
groundings. In S2S, we used an adapter patternvi and required that a core set of
methods be implemented in each “grounding” (see Figure 2). Once an adapter for a
specific Web service technology has been created, it can be reused on all other Web
services that use the same technology. Using a similar architecture for SWSs, a
grounding from a specific ontology to a syntactic Web service technology need only
be implemented once, instead of for each client.

Discussion

The S2S framework has employed a generic service description (the S2S ontology)
in the development of an intermediate “proxy” service to semantically annotated
Web services. It should be noted that this solution has been designed in the context
of stateless search and retrieval, but it will be interesting to see if it can be extended
to enable more interactive, stateful transactions, such as those found in many of the
use cases for SWSs. The S2S Framework provides a proof of concept for the utility
of a common communication interface to Semantic Web Services. In order for such
a communication interface to be developed, an abstract set of methods should be
specified, which would be implemented for each grounding. These methods should
be general enough to cover any Web service communication model, such as the four
types of WSDLVii operations (request-response, one-way, notification, and solicit-
response). Another requirement is the development of a standard for the
communication protocol, or at the very least a convention. One candidate for the
communication protocol is to use HTTP POST to submit RDF data using the OWL-S
vocabulary. Section 6.1 of the OWL-S W3C submission discusses the
correspondence between instances of OWL-S atomic processes and the four types of
WSDL operations. This sort of work is on the horizon for S2§, and the development
of standards for SWS “proxies”, including an architecture design for groundings and
a communication protocol, will facilitate the broader use of SWSs in general.

I'TWC, http://tw.rpi.edu/

i §2S, http: //tw.rpi.edu/web /project/sesf/workinggroups/s2s

iii SeSF project, http://tw.rpi.edu/web /project/sesf

v ESIP, http://esipfed.org

v OWL-S, http://www.w3.org/Submission/OWL-S/

vi Adapter pattern, http://en.wikipedia.org/wiki/Adapter_pattern
viit WSDL, http://www.w3.org/TR/wsdl

