
SCA: A Model for Data and Service
Integration on the Web?

Anish Karmarkar, Oracle

Anish.Karmarkar@oracle.com

September 16, 2011

1. Introduction and motivation
This position paper contains ideas and solutions for solving some of the data and service integration

problems encountered on the web. Service Component Architecture (SCA) [1] is a suite of specifications

developed in OASIS [2], which are close to being finalized and becoming a standard. SCA has been used

to solve problems faced in the enterprise, especially as it relates to composite applications,

service/application integration, mediation, amongst other things. Specifically it allows components that

use different implementation technologies, languages, transports, and protocols to be reused to build a

composite application that provides added value. It allows for using existing services as well as deploying

new services. But the problems that SCA tries to solve are not unique to the enterprise. This short paper

investigates three data and service integration problems in the context of the Web and emerging web-

based Cloud services, and proposes ways in which SCA may be able to address them.

1.1 Brief Introduction to SCA

Service Component Architecture (SCA) is a set of specifications [1], which define a model for building

applications and systems using a Service-Oriented Architecture. In SCA, services are provided by service

components, which may in turn use services provided by other components. Multiple service

components can be configured and assembled into groupings called composites, to provide specific

business capabilities, which model connections between components through wires. SCA supports the

creation and reuse of service components using a wide variety of implementation technologies,

including general purpose programming languages such as JavaTM, C++; orchestration languages such as

WS-BPEL; components frameworks such as Java Enterprise Edition and the Spring Framework.

Integration of both new and existing components is a key feature of SCA assemblies, including the ability

to assemble existing components that are not SCA-aware. An example SCA composite that uses multiple

technologies is depicted below.

2. Scenarios
The scenarios below do not try to exhaustively cover all the data and service integration cases that occur

on the web. These scenarios represent a class of problems that can be potentially solved by SCA.

2.1 Monitoring and Management of Cloud Applications
This scenario consists of an application or instances of multiple applications that are deployed across

multiple cloud service providers. There is a need to monitor various components that are deployed in

this multi-cloud environment and manage them as needed. This requires aggregation of various status

data, a dashboard if you will, which is presented to the administrator. The administrator may from time

to time take action based on the status or this may be automated based on predefined policies. For

example, a change in average response time may result in the administrator provisioning additional

compute-power, data-store, or bandwidth. This may be a decision based on pricing and knowledge of

various bottlenecks within a particular application.

2.2 Exposing a Multifaceted Service(s)
A company wants to open up its proprietary data on local businesses and their ratings and make it

available on the Web. It wants to take advantage of 'the wisdom of crowds' to enhance its data and

keep it current. This requires them to expose the data over the Web using RESTful APIs. It has to also

cater to implementations that want to use Web services and has prior commitments to make the same

data available over legacy proprietary interfaces and protocols. This means that the same data needs to

Warehouse
Service

WarehouseComposite

Warehouse
Broker

Component

(BPEL)

Warehouse

(Spring)
Component

EventLog

(Java)
Component

Order
Processing
Service

OrderProcessing

EventLog
Reference

External
Warehouse

Reference

Payments

(Java)
Component

Payment
Service

AccountsComposite
External
Banking

Reference

Accounts

(Java)
Ledger

Component

Component

(BPEL)

be available via multiple access points, each providing support for different format/protocol. It is also

necessary to provide consistency across various access points without disadvantaging a particular

format or protocol.

2.3 Fault-tolerant and load-balancing services
With the advent of SIP-based VOIP technology, several VOIP providers have sprung up that are based on

different business and pricing models. Unfortunately, these providers are notoriously unreliable with

respect to their availability and capacity. Furthermore they have different pricing models depending on

usage, quality-level etc. A softphone application is to be written to take advantage of these varying

business/pricing models and combine it with regular 'landlines' to provide a cheaper service with higher

availability. Therefore, the application cannot rely on a single provider and has to be written to work

with multiple-providers some of who may be periodically unavailable or may not have the needed

capacity. The application therefore must balance the call load across multiple providers based on

capacity, pricing and usage and must work around unavailable providers.

3. How does SCA address these scenarios?

3.1 Monitoring and Management of Cloud Applications

The figure above contains a composite that exposes a RESTful HTTP cloud dashboard service and

contains component B1 through Bn, each of which connect to a different cloud provider over a variety

of protocols. Component A provides the aggregation, control and presentation necessary for the

dashboard service.

Composite

Component A
Service

HTTP

B

Component B1
Reference 1

Properties

Component Bn
Reference n

HTTP

Non-HTTP

3.2 Exposing a Multifaceted Service(s)

The figure above consists of a composite with a single component that exposes access to the underlying

data over multiple protocols/formats by exposing multiple services each with a different binding or

format. This provides an ability for the consumer to choose the format/protocol that servers it the best

by choosing the appropriate service.

3.3 Providing Fault-tolerant and load-balancing service

Composite

Component A

Service

Reference 1

Reference n

Composite

Component A

HTTP

Service 1

Non-HTTP

Service n

The figure above consists of a single composite that connects to multiple external SIP and PSTN

providers. The component also offers a single service that provides the fault-tolerance/load-balancing

needed to work around failures, trunk capacity, and policies.

4. What is missing?
Although the SCA model has built-in extensibility and support for heterogeneous implementation,

interface, and binding technologies, the current proposed SCA standards use WSDL 1.1 interface as the

convergence point for interoperability, requiring all interfaces to be mappable to WSDL 1.1. This, for

example, does not work well with RESTful services and applications. Something similar to WADL [3],

which is REST-friendly, would be more appropriate for this purpose. Furthermore, SCA does not include

(although it does not prevent the creation of such an extension) a standard for an HTTP binding as well

as various technologies that are popular on the web (PHP, Ruby on Rails, etc). SCA would have to be

enhanced/extended to provide support for these technologies.

5. Summary
SCA model does seem like a good fit to solve the data/service integration problems listed in the

scenarios above. This would require further experimentation and extension of the existing SCA

standards to provide support for technologies that are popular on the web including support for WADL,

HTTP-binding and similar REST-friendly technologies. SCA model is focused on allowing heterogeneous

technologies with copious extension mechanisms that will enable such experimentation.

References
[1] http://www.oasis-opencsa.org/sca

[2] http://oasis-open.org/

[3] http://www.w3.org/Submission/wadl/

http://www.oasis-opencsa.org/sca
http://oasis-open.org/
http://www.w3.org/Submission/wadl/

