
Experiences with JSON and XML Transformations
IBM Submission to W3C Workshop on Data and Services Integration

October 20-21 2011, Bedford, MA, USA
John Boyer, Sandy Gao, Susan Malaika, Michael Maximilien, Rich Salz, Jerome Simeon

Background
While JSON and XML are both used to represent structured data they have disjoint sets of tools and sup-
porting language libraries are different; as such, software engineers find it increasingly necessary to convert
between the two formats to take advantage of the available tooling, and to make data available in its “most
natural” form to applications.

In this article we introduce the concepts of friendly JSON and friendly XML, and we consider the effects of
round-trip capability when defining mappings. We then describe various mapping approaches between
JSON and XML as well as a short comparison between them.

The Mapping Approaches
When mapping JSON and XML, these topics are of interest:
� Round-tripping the messages (XML to JSON to XML; or JSON to XML to JSON)
� Character encodings
� Mapping names and characters
� Mapping data types
� Mapping XML namespaces
� Mapping XML repeating elements
� Mapping JSON arrays
� Associating variables with data types in JSON

In order to characterize mapping approaches, we consider two major aspects: friendliness and
round-trippability.
� A JSON-to-XML mapping is friendly when the generated XML has meaningful element and attribute

names, rather than a name value pair design.
� An XML-to-JSON mapping is friendly when the generated JSON has flat structure, making it easy for

JavaScript programmers to consume it.
� A JSON-to-XML mapping is round-trippable when the generated XML contains all the information

that was in the original JSON, without any loss.
� An XML-to-JSON mapping is round-trippable when the generated JSON contains all the information

that was in the original XML, without any loss.

We consider four mapping approaches.

Only round-trip when
needed, with degraded
friendliness

Mapping Approach Overview

Friendly
XML

Mapper
A

Arbitrary
JSON

Approach 2
JSON to XML
Focus on round-tripping

Arbitrary
JSON

Mapper
B

XML

Arbitrary
XML

Mapper
C

Friendly
JSON

Mapper
C’

Possibly
different

XML

[1.1] [1.2]

[1.3][1.4]

[2.1]

[2.3]

[2.2]

[2.4]

[3.1] [3.2] [3.3] [3.4]

Arbitrary
XML

Mapper
D

[4.1]

[4.4]

JSON
[4.2]

[4.3]

Approach 1
JSON to XML
Focus on friendliness

Approach 3
XML to JSON
Focus on friendliness

Approach 4
XML to JSON
Focus on round-tripping

Approach #1: Arbitrary JSON to XML (Friendly, Round-trippable)
This mapping approach converts JSON to XML in a way
that preserves the naming and structure in the JSON to the
maximum extent possible. The JSON to XML mapping [1]

under development by the W3C XForms group falls into
this category.

The first priority is to make the JSON data easily consum-
able by XML applications, for example easily referenceable
by XPath location paths that are similar to JavaScript ref-
erences to the JavaScript objects that correspond to the
JSON. Concretely, JSON object members and array items
are mapped to XML elements and simple values are
mapped to textual content of the containing element.

The second priority is to "gracefully degrade" the friendliness of the conversion as needed in order to pre-
serve all information in the JSON. This also has the side effect of enabling round-trip conversion of the
XML back into JSON:
� JSON data types (string, number, boolean) are captured using additional “type” attributes
� JSON “null” values are represented using special “nil” attributes

JSON:

{

 "city": "Armonk",

 "state": "NY",

 "population": 4080

}

XML:

<root type="object">

 <city type="string">Armonk</city>

 <state type="string">NY</state>

 <population type="number">4080

 </population>

</root>

� JSON arrays are indicated using “type” attributes, and array items become sub-elements of the array
element

� When JSON names contain characters not allowed by XML NCName, they are escaped to form a
valid NCName. The original JSON names can optionally be stored in special “name” attributes.

Approach #2: Arbitrary JSON to XML (Round-trippable)
This approach usually uses name value pair ap-
proach, for example JSONx [2], which was contrib-
uted by IBM to IETF.

Round-tripping JSON requires that data and data
type information are preserved as encodings are ap-
plied. For some encodings, data loss can occur be-
cause JSON structures do not directly map to the
target encoding.
� A JSON structure can be comprised of a variety

of data types. In JSON, a numeric value of 547
is distinct from a string value of "547". The
boolean value true is distinct from the string
"true". So to be able to round-trip to and from JSON with full fidelity, the mapping needs to store
metadata describing the JSON type of each simple value.

� Additionally, in JSON a property that contains an array is distinct from one that contains an object.
There is no such distinction in XML documents. So you need metadata that describes whether an
XML element represents a JSON object or a JSON array.

� And finally, the character set that's valid for a JSON property name isn't a subset of the character set
that's valid for an XML element name; so you can't just directly map a JSON property name to an
element name. The only option is to store it as data on the element so you can preserve the name.

JSONx satisfies the above round-tripping requirements.

Approach #3: Arbitrary XML to JSON (Friendly, not Round-trippable)
This mapping approach converts XML to JSON in a way that at-
tempts to preserve the naming and structure in the XML document
to the maximum extent possible. JAQL, for example, has a function
to convert XML to JSON [3].

The first priority is to make the XML data easily consumable by
JSON applications, for example easily referenceable by object and
array access operations that are similar to XPath navigation on the
original document.

JSON:

{

 "city": "Armonk",

 "state": "NY",

 "population": 4080

}

XML:

<object>

 <string name="city">Armonk</string>

 <string name="state">NY</string>

 <number name="population">4080</number>

</object>

XML:

<people>

 <person>

 <name>John Smith</name>

 <age>40</age>

 </person>

 <person>

 <name>Jane Foster</name>

 <age>43</age>

 </person>

</people>

Round-trippability is notably more difficult than in the
JSON to XML case, and existing approaches that at-
tempt at producing friendly JSON are not
round-trippable.

Approach #4: Arbitrary XML to JSON (Round-trippable)
Mapping XML to JSON in a round-trippable way raises specific
challenges. Notably, several aspects of the XML data model do
not have a JSON counterpart. Some of the specific differences
are:
� XML supports multiple child elements with the same name.

In JSON it is unusual to allow object fields with the same
name.

� XML supports different kinds of nodes, including notably
element and attributes nodes which are distinct.

� XML supports namespaces and qualified names that do not
have an equivalent in JSON.

� XML supports document order and allows mixed content.
� XML supports a richer set of data types than JSON (e.g.,

data/time, binary types).

It is still possible to define a generic, round-trippable mapping
from XML to JSON. Here is a set of rules that can be used to
provide such a mapping:
(1) All elements are mapped as JSON objects with its qualified name as a field.
(2) Attributes of that element are included as an attribute object inside that element.
(3) Children of that element are included as an array that allows preservation of the original order of the

element's children.

Comparison of Mapping Approaches
Mapping approaches #1 and #2 are suitable for scenarios where data exists in JSON and needs to be
mapped to XML. Mapping approaches #3 and #4 are suitable for scenarios where data exists in XML and
needs to be mapped to JSON. Note that it is extremely difficult, if not impossible, to have a single mapping
approach that can handle both arbitrary XML and arbitrary JSON.

Approach #1 should be used when the highest priority is to make the resulting XML easy to consume by
existing XML tools and programming models; approach #2 should be used when the priority is
round-trippable conversions, where the intermediary XML is not accessed directly by XML applications.

JSON:

{ "people": {

 "person": [

 {"age": "40", "name": "John Smith"},

 {"age": "43", "name": "Jane Foster"}

] } }

XML:

<book>

 <title isbn="15115115">

 This book is

 <emph>bold</emph>

 </title>

</book>

JSON:

{ "book" :

 { "children :

 [{ "title" :

 { "attributes" :

 { "isbn": "15115115" },

 "children" :

 ["This book is ",

 { "emph" : "bold" }

] } }] } }

Similarly, approach #3 is more suitable when the highest priority is to make the resulting JSON easily con-
sumable, for example by JavaScript of User Interface developers; use approach #4 when the priority is not
JSON consumption, but the ability of round-trippable conversions.

Conclusion
As applications become more distributed, in particular as enterprise (or back-end) systems need to be ac-
cessed by growing numbers of types of clients, (often mobile, often with limited resources,) the need to
map between the “natural” data formats of these two environments is becoming increasingly important.

We have identified several of the characteristics important to these mappings. Depending on the require-
ments of the particular use-case, one of the approaches we describe would be a better fit then the alterna-
tives. The industry can probably benefit from more study of this area; developers can certainly benefit from
guidelines and/or specifications from the World Wild Web Consortium.

References
[1] http://www.w3.org/MarkUp/Forms/wiki/Json
[2] http://tools.ietf.org/html/draft-rsalz-jsonx-00
[3] http://code.google.com/p/jaql/wiki/Builtin_functions#xmlToJson%28%29

http://www.w3.org/MarkUp/Forms/wiki/Json
http://tools.ietf.org/html/draft-rsalz-jsonx-00
http://code.google.com/p/jaql/wiki/Builtin_functions%23xmlToJson%28%29

