
Copyright IBM 1

Experiences with JSON and XML
Transformations

IBM Submission to W3C Workshop on Data and Services Integration
October 20-21 2011, Bedford, MA, USA

21 October 2011
John Boyer, Sandy Gao, Susan Malaika, Michael Maximilien, Rich Salz, Jerome Simeon

Feedback to: malaika@us.ibm.com

Copyright IBM 2

Agenda

• Why Do We Want to Transform

• Friendliness vs Grotesqueness (Unfriendliness)

• Typical JSON and XML Mapping Issues
– Round-Trippability

– Friendliness

– A Use Case

• Mapping Approaches
– Overview of Approaches 1-4

– Recommendations

• Ideas

• Some Published Mappings and References

• The Grand Finale

Copyright IBM 3

Why Do We Want To Transform?

• Trend: Javascript/Web 2.0 dominates for:

– Fast parsing of message content

– Programmer convenience

• Trend: Multiple message formats (Atom, XML, JSON,
etc) are becoming common

– XML APIs and REST APIs are being extended to support JSON

• Trend: Enterprises desire validation, declarative
constraints and stringency for data content, but also want
the benefits of Web 2.0

– Customer demand for:

• Constraint and query features provided by XML

• Programming ease provided by JSON

Copyright IBM 4

Some Data and Metadata Standards

JavaScript

-

-

JAQL, JSONiq

-

JSON is a serialized
format, there are
XML representations
of JSON too

-

-

JSON Schema -
IETF

JSON

RDFa (W3C) can be used to
annotate XML

Many kinds of annotations
are defined for XML
schemas and for XML data

Not part of the relational
model

Annotations

RIF (W3C)-Relational triggersTriggers

RDF Graphs (W3C)XML Collection Function
(W3C)

Table, View, Database (ISO)Collection

SPARQL Graph Store HTTP
Protocol – for CRUD (W3C)

Various, includes some of
the relational APIs and
specific APIs, e.g., XQJ

Many for various programming
languages, e.g., JDBC, ODBC

Query & CRUD
APIs

-XSLT (XML to text, includes
XML); XForms

SQL XMLTABLE (XML to
relational)

SQL (Tables to Tables)Transformation &
Other Languages

SPARQL (W3C)XPath, XQuery (W3C) and
others for CRUD

Data Manipulation Language
(DML), SQL, SQL/XML (ISO)

Query & CRUD
Languages

XML, TurtleXML is a syntax widely used
for data exchange (W3C)

SQL standard (ISO) defines
an XML serialization but it is
not widely used – There is no
agreed JSON serialization.
There are RDF serializations.

Data Exchange
Serializations

Schematron (ISO), Relax-
NG (OASIS)

Integrity Constraints in table
definitions (ISO)

Constraints

RDFS (RDF Schema), Ontology
(W3C and elsewhere)

XML Schema XSD (W3C) ,
Namespaces (W3C)

Data Definition Language
(ISO)

Metadata

Linked DataXMLRelational

Currently, the role of JSON is mainly
for data exchange between JavaScript

clients and servers
Some XML communities who work on

query and transformation languages are
reviewing the idea of XML languages

supporting JSON

Copyright IBM 5

Friendly XML

• Friendly XML has multiple unique paths (multiple
element and attribute names) in the XML, rather than a
name value pair design

• Friendliness provides
– Easy XML consumption by programmers, authors and software

– Straightforward transforms, queries, and indexing capabilities

<location>
<city>Armonk</city>
<state>NY</state>

</location>

Friendly XML Example UnFriendly XML Example

<root type="object”>
<item name=“city” value=“Armonk” />
<item name =“state” value =“NY” />
</root>

Copyright IBM 6

Friendly JSON

• Friendly JSON does not include repeating
variable names

• Data types are directly associated with each
variable

• Friendliness provides easy data structure
consumption by JavaScript programmers,
authors

{
"person": {
"age": "40",
"name": "John Smith"

}
}

Friendly JSON Example

{ "book" : { "children :
[{ "title" : { "attributes" :

{ "isbn": "15115115" },
"children" :

["This book is ", { "emph" : "bold" }] }
}] }

}

UnFriendly JSON Example

Copyright IBM 7

Typical JSON and XML Mapping Issues

• Round-trip transformations are challenging

– XML to JSON to XML

– JSON to XML to JSON

• General issues
– Different character mapping for names and values in JSON and XML

– Mismatch in data types between JSON and XML

– Semantic infidelity

• XML to JSON issues

– Losing XML namespaces

– Incorrectly mapping XML repeating elements

– Mishandling of relative URLs

• JSON to XML issues

– Incorrectly mapping JSON arrays

– Associating variables with data types in JSON

Copyright IBM 8

Round-trip

• Why is round-tripping important?

– Data and data type information has to be
preserved

– Fidelity, to prevent data loss

– Preservation of metadata, order

– Maintain usability regardless of format

– Some details are unnecessary, depending on
use cases

– May not help “Friendliness”

Copyright IBM 9

Mapping Approach Overview

Friendly
XML

Mapper
A

Arbitrary

JSON
Approach 1
JSON to XML

Focus on Friendliness

Approach 2
JSON to XML

Focus on Round-Tripping

Arbitrary

JSON
Mapper

B XML

Approach 3
XML to JSON

Focus on friendliness

Approach 4
XML to JSON

Focus on Round-Tripping

Arbitrary
XML

Mapper
C

Friendly

JSON
Mapper

C’

Possibly
different

XML

[1.1] [1.2]

[1.3]

[2.1]

[2.3]

[2.2]

[2.4]

[3.1] [3.2] [3.3]
[3.4]

Arbitrary
XML

Mapper
D

[4.1]

[4.4]

JSON

[4.2]

[4.3]

[1.4]

Only round trip when needed
with degraded friendliness

Example: JSONx at IETF

Copyright IBM 10

Friendly and Round-Trippable
Summary

• A JSON-to-XML mapping is friendly when the generated
XML has meaningful element and attribute names, rather
than a name value pair design.

• An XML-to-JSON mapping is friendly when the
generated JSON has flat structure, making it easy for
JavaScript programmers to consume it.

• A JSON-to-XML mapping is round-trippable when the
generated XML contains all the information that was in
the original JSON, without any loss.

• An XML-to-JSON mapping is round-trippable when the
generated JSON contains all the information that was in
the original XML, without any loss.

Copyright IBM 11

A JSON XML Use Case

SOAP/XML

SOAP Applications

HTTP-REST/JSON

JavaScript Clients

Friendly JSON

JSONx

Friendly XML

Gateway

Copyright IBM 12

Approach #1: JSON to Friendly XML

• Requirement 1: Friendly XML processing

• Requirement 2: Round-trippable

• Rules:

– JSON names become XML element names

– JSON object members and arrays become XML
elements, and

– Simple values become XML text content

– Synthesized XML 'root' element

– Special handling to preserve data type, kinds of
emptiness, and special characters

Copyright IBM 13

Approach #1: Example

{
"city": "Armonk",
"state": "NY"

}

<root type="object">
<city>Armonk</city>
<state>NY</state>

</root>

In this example,

becomes

Copyright IBM 14

Approach #1: Special characters in
names and empty names

A JSON name may not match an XML
NCName

• Each illegal character is escaped
• with two leading underscores,

• a hexadecimal encoding of the character's Unicode
codepoint and

• A trailing underscore

{
"var$":"value",
"":"generic"

}

<root type="object">
<var__24_>value</var__24_>
<__>generic</__>

</root>

Copyright IBM 15

Approach #1: Simple Values

JSON name/value pair with a simple value

• Generate XML element from name

• Store string equivalent of the simple value
as content of the XML element

• Typed as boolean, number, string, or null

{
"age":43,
"married":true,
"address":null

}

<root type="object">
<age type="number">43</age>
<married type="boolean">true</married>
<address nil="true"></address>

</root>

Copyright IBM 16

Approach #1: Object Values

JSON name/value pair with a non-null object
value,

• Generate XML element based on the
name

• Generate child elements for each of the
JSON name/value pairs

{
"address": { "street" : "123 Main St." }

}

<root type="object">
<address type="object">

<street>123 Main St.</street>
</address>

</root>

Copyright IBM 17

Approach #1: Arrays

JSON name/value pair with an array value

• Generate a container XML element for the
array

• Generate one child XML element for each
value in the array

{
"locations": ["Amsterdam", "London"],
"secondary_locations": []

}

<root type="object">
<locations type="array">
<__>Amsterdam</__>
<__>London</__>

</locations>
<secondary_locations

type="array"></secondary_locations>
</root>

Copyright IBM 18

Approach #1: Special Characters In
Values

Characters are copied from JSON except for
certain conversions:

< <

> >

& &

\udddd �

\” “

\\ \

\/ /

\n Newline (0x0A)

\r 

\t tab(0x09)

Non-XML chars(\b, \f) Omitted, or encoded as PI

Copyright IBM 19

Approach #2: JSON to XML and Back

• Requirement: Round-trippable

• Usually a name/value pair

• Rules:

– XML elements to preserve data type

– XML elements to preserve objects

– XML elements to preserve arrays

– XML attributes/text to preserve property
names

Copyright IBM 20

Approach #2: Example

...
"batters":

{
"batter":

[
{ "id": 2001, "type": "Regular" },
{ "id": 2003, "type": "Blueberry" }

]
},

...

<json:object name="batters">
<json:array name="batter">
<json:object>
<json:number name="id">2001</json:number>
<json:string name="type">Regular</json:string>

</json:object>
<json:object>
<json:number name="id">2003</json:number>
<json:string name="type">Blueberry</json:string>

</json:object>
</json:array>

</json:object>

In this example,

becomes

Copyright IBM 21

Approach #3: XML to Friendly JSON

• Requirement: Consumable/Friendly JSON

• Requirement: Preserve XML structure

• Rules:

– XML element or attribute names become
JSON object names,

– XML children elements become JSON objects
fields or arrays, and

– XML text nodes become JSON simple values

Copyright IBM 22

Approach #3: Multiple Child Elements
With Same Name

When multiple child elements have the
same name, use JSON arrays to
represent those elements.

<people>
<person>

<name>John Smith</name>
<age>40</age>

</person>
<person>

<name>Jane Foster</name>
<age>43</age>

</person>
</people>

{ "people": {
"person": [
{
"age": "40",
"name": "John Smith"

},
{
"age": "43",
"name": "Jane Foster"

}
]
}

}

Copyright IBM 23

Approach #3: Attributes and Element
Nodes

Preserve XML notion of attributes

<title isbn="15115115">This book is on XML and JSON</title>

{
"title": {
"@isbn": "15115115",
"text()": "This book is on XML and JSON"

}
}

Copyright IBM 24

Approach #3: Text Nodes and Mixed
Content

An XML element could contain both child
elements and text

<name>John
Smith</name>

{
"name": {
"br": {},
"text()": "JohnSmith"

}
}

Copyright IBM 25

Approach #3: Handling Document
Order

Preserve document order with JSON array

<name>John
Smith</name>

{
"name": [
"br": {},
"text()": "JohnSmith"

]
}

Copyright IBM 26

Approach #3: XML Namespaces

JSON does not support a name-scoping
mechanism

• Confuses Round-tripping,

• Stops being friendly JSON

<n:root xmlns:n=\"foo\" xmlns:l=\"bar\" l:att=\"1\">
<n:node/>

</n:root>

{ "foo": {
"root": {
"bar": {
"@att": "1"

},
"foo": {
"node": {}

}
}

}
}

Copyright IBM 27

Approach #3: Simple Values and
Datatypes

May be necessary to keep track of the
original XML type annotation

<year xsi:type="xs:positiveInteger">1989</year>

{ "xsi:type" : "xs:positiveInteger", value : 1989 }

Copyright IBM 28

Approach #4: XML to JSON and Back

• Requirement: Round-trippable

• Rules:

� Elements are mapped as JSON objects with its
qualified name as a field

� Attributes of XML elements are included as a
JSON “attributes” object

� Element children are included as an array to
preserve the original order of the element's
children

Copyright IBM 29

Approach #4: Example

...
<book>
<title isbn=\"15115115\">This book is <emph>bold</emph></title>

</book>
...

{ "book" :
{ "children :

[{ "title" : { "attributes" : { "isbn": "15115115" },
"children" : ["This book is ",

{ "emph" : "bold" }] } }] } }

In this example,

becomes

Copyright IBM 30

Mapping Approach Recommendations

• Use Approach 1 when your highest priority is to
make the resulting XML easy to consume and then
optionally round-trippable

• Use Approach 2 when your priority is round-
trippable conversions

• Use Approach 3 when your highest priority to make
the resulting JSON easily consumable and then
round-trippable

• Use Approach 4 when your priority is not JSON
consumption, but still capable of round-trip
conversions

Copyright IBM 31

Ideas and Discussion

• Provide structured guidance to the W3C XSLT
and other groups that are looking at integrating
JSON and XML ?

• Provide guidance for architects and developers
who create APIs and formats which apply to
both JSON and XML ?

• Review the OData JSON proposals ? (Contains
JSON representation for ATOM)

Copyright IBM 32

Another Idea - Consider creating a W3C REST
Community?

Topics could include:

• (1) Identify gaps e.g.,

• WADL or similar? URL Query?

• Expressing REST API results (e.g., RDF; JSON; XML; ATOM) and paging ?

• JSON Schema http://tools.ietf.org/html/draft-zyp-json-schema-03 ?

• (2) Create Best Practices e.g.,

• REST CRUD (use of POST as alternative) ;

• POST CREATE only or TUNNEL anything ;

• Partial update via POST instead of PATCH

• Retrieve subset a resource from POST

• Resource Links / ATOM - HREF and REL ;

• <atom:link rel='...' href='...'/> ;

• <machine rel='...' href='...'/>

• URI opaqueness

• MIME Types

• Generic MIME -> Generic Tooling ;

• Specific MIME class -> Specific Tooling

• Important for JSON - no guarantee there will be "Root Element (outer element) ;
if MIME TYPE JSON/XML don't know anything

Copyright IBM 33

Examples from CWMG
(Cloud Management Work Group at DMTF)

• Modeling collections : Update collections
• Allowable operations on a class of resources :

• <operation url='xxx' rel='xxx'/>

• <operation url="/foo" rel="stop'/>

• Async processing
• What does client do after 202 ?

• CWMG Reference:
• http://dmtf.org/sites/default/files/standards/documents/DSP0263_

1.0.0a.pdf

• CWMG Primer:
• http://dmtf.org/sites/default/files/standards/documents/DSP2027_

1.0.0a.pdf

Copyright IBM 34

Examples from URL Queries

• Queries in URLs have become common

• It is usual to offer the query responses in one or more of XML, ATOM or
JSON.

• Here are some examples:

– Twitter Search API : http://search.twitter.com/api/
• Example - http://search.twitter.com/search.atom?lang=en&q=&metopera&rpp=15 -

Return all English language tweets that contain references to user metopera in chunks
of 15 tweets per page - as atom

– FaceBook Graph API (part of the Facebook Graph Protocol) :
http://developers.facebook.com/docs/reference/api/

• Example - https://graph.facebook.com/me/friends?limit=3 - Return all my friends in
chunks of 3 - as JSON

– OData : http://www.odata.org/developers/protocols/uri-
conventions#QueryStringOptions

• Example -
http://services.odata.org/OData/OData.svc/Products?$skip=2&$top=2&$orderby=Rating
- Return the 3rd and 4th products when sorted by rating - as atom

• The OData interface has been adopted by Microsoft and by SAP

Copyright IBM 35

Some Published Mappings

• JSONx: http://datatracker.ietf.org/doc/draft-rsalz-jsonx/

• JAQL:
http://code.google.com/p/jaql/wiki/Builtin_functions#xmlToJson()

• XForms: http://www.w3.org/MarkUp/Forms/wiki/Json

• Jettison:
http://jettison.codehaus.org/User%27s+Guide#User%27sGuide-
Conventions]

• Badgerfish: http://www.sklar.com/badgerfish

• JSON4J:
http://publib.boulder.ibm.com/infocenter/wasinfo/fep/index.jsp?topic=
/com.ibm.json.help/docs/GettingStarted.html

• Zorba: http://www.zorba-xquery.com/doc/zorba-
1.4.0/zorba/xqdoc/xhtml/www.zorba-xquery.com_modules_json.html

Copyright IBM 36

References

• XML: http://www.w3.org/XML/

• JSON : http://www.json.org/

• Convert Atom documents to JSON :
http://www.ibm.com/developerworks/library/x-atom2json/index.html

• OData Protocol JSON Format:
http://www.odata.org/developers/protocols/json-format

Copyright IBM 37

The Grande Finale

