
Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language

W3C Candidate Recommendation 6 January 2006
This version:

http://www.w3.org/TR/2006/CR-wsdl20-20060106
Latest version:

http://www.w3.org/TR/wsdl20
Previous versions:

http://www.w3.org/TR/2005/WD-wsdl20-20050803
Editors:

Roberto Chinnici, Sun Microsystems
Jean-Jacques Moreau, Canon
Arthur Ryman, IBM
Sanjiva Weerawarana, WSO2

This document is also available in these non-normative formats: XHTML with Z Notation, PDF, PDF with
Z Notation, PostScript, XML, and plain text.

Copyright © 2006 World Wide Web ConsortiumW3C® (Massachusetts Institute of TechnologyMIT,
European Research Consortium for Informatics and MathematicsERCIM, Keio), All Rights Reserved.
W3C liability, trademark and document use rules apply.

Abstract
This document describes the Web Services Description Language Version 2.0 (WSDL 2.0), an XML
language for describing Web services. This specification defines the core language which can be used to
describe Web services based on an abstract model of what the service offers. It also defines the confor-
mance criteria for documents in this language.

Status of this Document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

1

Table of Contents

http://www.w3.org/
http://www.w3.org/TR/2006/CR-wsdl20-20060106
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/2005/WD-wsdl20-20050803
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/TR/

This is the W3C Candidate Recommendation of Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language for review by W3C Members and other interested parties. It has been produced by
the Web Services Description Working Group, which is part of the W3C Web Services Activity. The
publication of this document signifies a call for implementations of this specification. This specification
will remain a Candidate Recommendation at least until 15 March 2006.

This Working Draft addresses all the comments received during the second Last Call review period on the
WSDL 2.0 drafts. The detailed disposition of the comments received can be found in the Last Call issues
list. A diff-marked version against the previous version of this document is available. For a detailed list of
changes since the last publication of this document, please refer to appendix E. Part 1 Change Log
[p.108] .

The Working Group plans to submit this specification for consideration as a W3C Proposed Recommen-
dation if the following exit criteria have been met:

Two interoperable implementations of all the features, both mandatory and optional, of the specifica-
tions have been produced.

The Working Group releases a test suite along with an implementation report.

The sections 2.7 Feature [p.39] and 2.8 Property [p.44] in this specification, defining the feature and
property components, are considered at risk. The Working Group may recommend to remove the compo-
nents from the specification, depending on their use and the implementations.

Implementers are encouraged to provide feedback by 15 March 2006. Comments on this document are to
be sent to the public public-ws-desc-comments@w3.org mailing list (public archive).

Issues about this document are recorded in the Candidate Recommendation issues list maintained by the
Working Group. A list of formal objections against the set of WSDL 2.0 Working Drafts is also available.

Publication as a Candidate Recommendation does not imply endorsement by the W3C Membership. This
is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inap-
propriate to cite this document as other than work in progress.

This document has been produced under the 24 January 2002 Current Patent Practice as amended by the
W3C Patent Policy Transition Procedure. Patent disclosures relevant to this specification may be found on
the Working Group’s patent disclosure page. An individual who has actual knowledge of a patent which
the individual believes contains Essential Claim(s) with respect to this specification should disclose the
information in accordance with section 6 of the W3C Patent Policy.

Short Table of Contents
1. Introduction [p.7]
2. Component Model [p.12]
3. Types [p.73]
4. Modularizing WSDL 2.0 descriptions [p.80]
5. Documentation [p.84]

2

Short Table of Contents

http://www.w3.org/2005/10/Process-20051014/tr.html#RecsCR
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/Activity
http://www.w3.org/2005/10/Process-20051014/tr.html#cfi
http://www.w3.org/2002/ws/desc/5/lc-issues/
http://www.w3.org/2002/ws/desc/5/lc-issues/
http://www.w3.org/2005/10/Process-20051014/tr.html#RecsPR
http://www.w3.org/2005/10/Process-20051014/tr.html#RecsPR
http://www.w3.org/2002/ws/desc/5/impl-report/
http://www.w3.org/2005/10/Process-20051014/tr.html#at-risk-feature
http://www.w3.org/2005/10/Process-20051014/tr.html#cfi
http://lists.w3.org/Archives/Public/public-ws-desc-comments/
http://www.w3.org/2002/ws/desc/5/cr-issues/
http://www.w3.org/2002/ws/desc/5/07/objections.html
http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2002/ws/desc/2/04/24-IPR-statements.html
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

6. Language Extensibility [p.85]
7. Locating WSDL 2.0 Documents [p.88]
8. Conformance [p.88]
9. XML Syntax Summary (Non-Normative) [p.89]
10. References [p.91]
A. The application/wsdl+xml Media Type [p.94]
B. Acknowledgements [p.101] (Non-Normative)
C. IRI-References for WSDL 2.0 Components [p.102] (Non-Normative)
D. Component Summary [p.104] (Non-Normative)
E. Part 1 Change Log [p.108] (Non-Normative)

Table of Contents
1. Introduction [p.7]
 1.1 Web Service [p.7]
 1.2 Document Conformance [p.8]
 1.3 The Meaning of a Service Description [p.8]
 1.4 Notational Conventions [p.8]
 1.4.1 RFC 2119 Keywords [p.9]
 1.4.2 RFC 3986 Namespaces [p.9]
 1.4.3 XML Schema anyURI [p.9]
 1.4.4 Prefixes and Namespaces Used in This Specification [p.9]
 1.4.5 Terms Used in This Specification [p.10]
 1.4.6 XML Information Set Properties [p.11]
 1.4.7 WSDL 2.0 Component Model Properties [p.11]
 1.4.8 Z Notation [p.11]
 1.4.9 BNF Pseudo-Schemas [p.12]
 1.4.10 Assertions [p.12]
2. Component Model [p.12]
 2.1 Description [p.13]
 2.1.1 The Description Component [p.13]
 2.1.2 XML Representation of Description Component [p.15]
 2.1.2.1 targetNamespace attribute information item [p.16]
 2.1.3 Mapping Description’s XML Representation to Component Properties [p.17]
 2.2 Interface [p.18]
 2.2.1 The Interface Component [p.18]
 2.2.2 XML Representation of Interface Component [p.19]
 2.2.2.1 name attribute information item with interface [owner element] [p.20]
 2.2.2.2 extends attribute information item [p.20]
 2.2.2.3 styleDefault attribute information item [p.20]
 2.2.3 Mapping Interface’s XML Representation to Component Properties [p.21]
 2.3 Interface Fault [p.21]
 2.3.1 The Interface Fault Component [p.21]
 2.3.2 XML Representation of Interface Fault Component [p.23]
 2.3.2.1 name attribute information item with fault [owner element] [p.24]

3

Table of Contents

 2.3.2.2 element attribute information item with fault [owner element] [p.24]
 2.3.3 Mapping Interface Fault’s XML Representation to Component Properties [p.25]
 2.4 Interface Operation [p.25]
 2.4.1 The Interface Operation Component [p.25]
 2.4.1.1 Message Exchange Pattern [p.27]
 2.4.1.2 Operation Style [p.28]
 2.4.2 XML Representation of Interface Operation Component [p.28]
 2.4.2.1 name attribute information item with operation [owner element] [p.29]
 2.4.2.2 pattern attribute information item with operation [owner element] [p.30]
 2.4.2.3 style attribute information item with operation [owner element] [p.30]
 2.4.3 Mapping Interface Operation’s XML Representation to Component Properties [p.30]
 2.5 Interface Message Reference [p.31]
 2.5.1 The Interface Message Reference Component [p.31]
 2.5.2 XML Representation of Interface Message Reference Component [p.32]
 2.5.2.1 messageLabel attribute information item with input or output [owner element] [p.34]
 2.5.2.2 element attribute information item with input or output [owner element] [p.34]
 2.5.3 Mapping Interface Message Reference’s XML Representation to Component Properties [p.34]
 2.6 Interface Fault Reference [p.35]
 2.6.1 The Interface Fault Reference Component [p.35]
 2.6.2 XML Representation of Interface Fault Reference [p.36]
 2.6.2.1 ref attribute information item with infault, or outfault [owner element] [p.37]
 2.6.2.2 messageLabel attribute information item with infault, or outfault [owner element] [p.38]
 2.6.3 Mapping Interface Fault Reference’s XML Representation to Component Properties [p.38]
 2.7 Feature [p.39]
 2.7.1 The Feature Component [p.39]
 2.7.1.1 Feature Composition Model [p.40]
 2.7.1.1.1 Example of Feature Composition Model [p.42]
 2.7.2 XML Representation of Feature Component [p.43]
 2.7.2.1 ref attribute information item with feature [owner element] [p.43]
 2.7.2.2 required attribute information item with feature [owner element] [p.43]
 2.7.3 Mapping Feature’s XML Representation to Component Properties [p.44]
 2.8 Property [p.44]
 2.8.1 The Property Component [p.44]
 2.8.1.1 Property Composition Model [p.45]
 2.8.2 XML Representation of Property Component [p.47]
 2.8.2.1 ref attribute information item with property [owner element] [p.48]
 2.8.2.2 value element information item with property [parent] [p.48]
 2.8.2.3 constraint element information item with property [parent] [p.48]
 2.8.3 Mapping Property’s XML Representation to Component Properties [p.49]
 2.9 Binding [p.49]
 2.9.1 The Binding Component [p.49]
 2.9.2 XML Representation of Binding Component [p.50]
 2.9.2.1 name attribute information item with binding [owner element] [p.52]
 2.9.2.2 interface attribute information item with binding [owner element] [p.52]
 2.9.2.3 type attribute information item with binding [owner element] [p.52]
 2.9.2.4 Binding extension elements [p.52]
 2.9.3 Mapping Binding’s XML Representation to Component Properties [p.53]

4

Table of Contents

 2.10 Binding Fault [p.53]
 2.10.1 The Binding Fault Component [p.53]
 2.10.2 XML Representation of Binding Fault Component [p.54]
 2.10.2.1 ref attribute information item with fault [owner element] [p.55]
 2.10.2.2 Binding Fault extension elements [p.55]
 2.10.3 Mapping Binding Fault’s XML Representation to Component Properties [p.55]
 2.11 Binding Operation [p.56]
 2.11.1 The Binding Operation Component [p.56]
 2.11.2 XML Representation of Binding Operation Component [p.57]
 2.11.2.1 ref attribute information item with operation [owner element] [p.58]
 2.11.2.2 Binding Operation extension elements [p.58]
 2.11.3 Mapping Binding Operation’s XML Representation to Component Properties [p.58]
 2.12 Binding Message Reference [p.59]
 2.12.1 The Binding Message Reference Component [p.59]
 2.12.2 XML Representation of Binding Message Reference Component [p.59]
 2.12.2.1 messageLabel attribute information item with input or output [owner element] [p.60]
 2.12.2.2 Binding Message Reference extension elements [p.60]
 2.12.3 Mapping Binding Message Reference’s XML Representation to Component Properties [p.61]
 2.13 Binding Fault Reference [p.62]
 2.13.1 The Binding Fault Reference Component [p.62]
 2.13.2 XML Representation of Binding Fault Reference Component [p.62]
 2.13.2.1 ref attribute information item with infault or outfault [owner element] [p.63]
 2.13.2.2 messageLabel attribute information item with infault or outfault [owner element] [p.63]
 2.13.2.3 Binding Fault Reference extension elements [p.64]
 2.13.3 Mapping Binding Fault Reference’s XML Representation to Component Properties [p.64]
 2.14 Service [p.65]
 2.14.1 The Service Component [p.65]
 2.14.2 XML Representation of Service Component [p.66]
 2.14.2.1 name attribute information item with service [owner element] [p.67]
 2.14.2.2 interface attribute information item with service [owner element] [p.67]
 2.14.3 Mapping Service’s XML Representation to Component Properties [p.67]
 2.15 Endpoint [p.68]
 2.15.1 The Endpoint Component [p.68]
 2.15.2 XML Representation of Endpoint Component [p.69]
 2.15.2.1 name attribute information item with endpoint [owner element] [p.70]
 2.15.2.2 binding attribute information item with endpoint [owner element] [p.70]
 2.15.2.3 address attribute information item with endpoint [owner element] [p.70]
 2.15.2.4 Endpoint extension elements [p.70]
 2.15.3 Mapping Endpoint’s XML Representation to Component Properties [p.70]
 2.16 XML Schema 1.0 Simple Types Used in the Component Model [p.71]
 2.17 Equivalence of Components [p.71]
 2.18 Symbol Spaces [p.72]
 2.19 QName resolution [p.72]
 2.20 Comparing URIs and IRIs [p.73]
3. Types [p.73]
 3.1 Using W3C XML Schema Description Language [p.74]
 3.1.1 Importing XML Schema [p.75]

5

Table of Contents

 3.1.1.1 namespace attribute information item [p.76]
 3.1.1.2 schemaLocation attribute information item [p.76]
 3.1.2 Inlining XML Schema [p.76]
 3.1.2.1 targetNamespace attribute information item [p.77]
 3.1.3 References to Element Declarations and Type Definitions [p.78]
 3.2 Using Other Schema Languages [p.78]
 3.3 Describing Messages that Refer to Services and Endpoints [p.79]
 3.3.1 wsdlx:interface attribute information item [p.79]
 3.3.2 wsdlx:binding attribute information item [p.80]
 3.3.3 wsdlx:interface and wsdlx:binding Consistency [p.80]
 3.3.4 Use of wsdlx:interface and wsdlx:binding with xs:anyURI [p.80]
4. Modularizing WSDL 2.0 descriptions [p.80]
 4.1 Including Descriptions [p.80]
 4.1.1 location attribute information item with include [owner element] [p.81]
 4.2 Importing Descriptions [p.82]
 4.2.1 namespace attribute information item [p.83]
 4.2.2 location attribute information item with import [owner element] [p.84]
5. Documentation [p.84]
6. Language Extensibility [p.85]
 6.1 Element based Extensibility [p.85]
 6.1.1 Mandatory extensions [p.85]
 6.1.2 required attribute information item [p.87]
 6.2 Attribute-based Extensibility [p.87]
 6.3 Extensibility Semantics [p.87]
7. Locating WSDL 2.0 Documents [p.88]
 7.1 wsdli:wsdlLocation attribute information item [p.88]
8. Conformance [p.88]
 8.1 XML Information Set Conformance [p.88]
9. XML Syntax Summary (Non-Normative) [p.89]
10. References [p.91]
 10.1 Normative References [p.91]
 10.2 Informative References [p.93]

Appendices

A. The application/wsdl+xml Media Type [p.94]
 A.1 Registration [p.94]
 A.2 Fragment Identifiers [p.96]
 A.2.1 The Description Component [p.97]
 A.2.2 The Element Declaration Component [p.98]
 A.2.3 The Type Definition Component [p.98]
 A.2.4 The Interface Component [p.98]
 A.2.5 The Interface Fault Component [p.98]
 A.2.6 The Interface Operation Component [p.98]
 A.2.7 The Interface Message Reference Component [p.99]
 A.2.8 The Interface Fault Reference Component [p.99]

6

Appendices

 A.2.9 The Binding Component [p.99]
 A.2.10 The Binding Fault Component [p.99]
 A.2.11 The Binding Operation Component [p.99]
 A.2.12 The Binding Message Reference Component [p.100]
 A.2.13 The Binding Fault Reference Component [p.100]
 A.2.14 The Service Component [p.100]
 A.2.15 The Endpoint Component [p.100]
 A.2.16 The Feature Component [p.101]
 A.2.17 The Property Component [p.101]
 A.2.18 Extension Components [p.101]
 A.3 Security considerations [p.101]
B. Acknowledgements [p.101] (Non-Normative)
C. IRI-References for WSDL 2.0 Components [p.102] (Non-Normative)
 C.1 WSDL 2.0 IRIs [p.102]
 C.2 Example [p.103]
D. Component Summary [p.104] (Non-Normative)
E. Part 1 Change Log [p.108] (Non-Normative)
 E.1 WSDL 2.0 Specification Changes [p.108]

1. Introduction
Web Services Description Language Version 2.0 (WSDL 2.0) provides a model and an XML format for
describing Web services. WSDL 2.0 enables one to separate the description of the abstract functionality
offered by a service from concrete details of a service description such as “how” and “where” that func-
tionality is offered.

This specification defines a language for describing the abstract functionality of a service as well as a
framework for describing the concrete details of a service description. It also defines the conformance
criteria for documents in this language. The WSDL Version 2.0 Part 2: Adjuncts specification [WSDL 2.0
Adjuncts [p.92]] describes extensions for Message Exchange Patterns, SOAP modules, and a language for
describing such concrete details for SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework [p.93]] and
HTTP [IETF RFC 2616 [p.93]].

1.1 Web Service

WSDL 2.0 describes a Web service in two fundamental stages: one abstract and one concrete. Within each
stage, the description uses a number of constructs to promote reusability of the description and to separate
independent design concerns.

At an abstract level, WSDL 2.0 describes a Web service in terms of the messages it sends and receives;
messages are described independent of a specific wire format using a type system, typically XML Schema.

An operation associates a message exchange pattern with one or more messages. A message exchange
pattern identifies the sequence and cardinality of messages sent and/or received as well as who they are
logically sent to and/or received from. An interface groups together operations without any commitment to
transport or wire format.

7

1. Introduction

At a concrete level, a binding specifies transport and wire format details for one or more interfaces. An
endpoint associates a network address with a binding. And finally, a service groups together endpoints that
implement a common interface.

1.2 Document Conformance

An element information item (as defined in [XML Information Set [p.92]]) whose namespace name is
"http://www.w3.org/2006/01/wsdl" and whose local part is description conforms to this specification
if it is valid according to the XML Schema for that element as defined by this specification
(http://www.w3.org/2006/01/wsdl/wsdl20.xsd) and additionally adheres to all the constraints contained in
this specification family and conforms to the specifications of any extensions contained in it. Such a
conformant element information item constitutes a WSDL 2.0 document.

The definition of the WSDL 2.0 language is based on the XML Information Set [XML Information Set
[p.92]] but also imposes many semantic constraints over and above structural conformance to this XML
Infoset. In order to precisely describe these constraints, and as an aid in precisely defining the meaning of
each WSDL 2.0 document, the WSDL 2.0 specification defines a component model 2. Component Model
[p.12] as an additional layer of abstraction above the XML Infoset. Constraints and meaning are defined in
terms of this component model, and the definition of each component includes a mapping that specifies
how values in the component model are derived from corresponding items in the XML Infoset.

An XML 1.0 document that is valid with respect to the WSDL 2.0 XML Schema and that maps to a valid
WSDL 2.0 Component Model is conformant to the WSDL 2.0 specification.

1.3 The Meaning of a Service Description

A WSDL 2.0 service description indicates how potential clients are intended to interact with the described
service. It represents an assertion that the described service fully implements and conforms to what the
WSDL 2.0 document describes. For example, as further explained in section 6.1.1 Mandatory extensions
[p.85] , if the WSDL 2.0 document specifies a particular optional extension, the functionality implied by
that extension is only optional to the client. It must be supported by the Web service.

A WSDL 2.0 interface describes potential interaction with a service--not required interaction. The declara-
tion of an operation in a WSDL 2.0 interface is not an assertion that the interaction described by the opera-
tion must occur. Rather it is an assertion that if such an interaction is (somehow) initiated, then the
declared operation describes how that interaction is intended to occur.

1.4 Notational Conventions

All parts of this specification are normative, with the EXCEPTION of notes, pseudo-schemas, examples,
and sections explicitly marked as “Non-Normative”.

8

1.2 Document Conformance

http://www.w3.org/2006/01/wsdl/wsdl20.xsd

1.4.1 RFC 2119 Keywords

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be inter-
preted as described in RFC 2119 [IETF RFC 2119 [p.91]].

1.4.2 RFC 3986 Namespaces

Namespace names of the general form:

"http://example.org/..." and

"http://example.com/..."

represent application or context-dependent URIs [IETF RFC 3986 [p.92]].

1.4.3 XML Schema anyURI

This specification uses the XML Schema type xs:anyURI (see [XML Schema: Datatypes [p.92]]). It is
defined so that xs:anyURI values are essentially IRIs (see [IETF RFC 3987 [p.92]]). The conversion
from xs:anyURI values to an actual URI is via an escaping procedure defined by (see [XML Linking
Language (XLink) 1.0 [p.94]]), which is identical in most respects to IRI Section 3.1.

For interoperability, WSDL authors are advised to avoid the US-ASCII characters: "<", ">", ’"’, space,
"{", "}", "|", "\", "^", and "‘", which are allowed by the xs:anyURI type, but disallowed in IRIs.

1.4.4 Prefixes and Namespaces Used in This Specification

This specification uses predefined namespace prefixes throughout; they are given in the following list.
Note that the choice of any namespace prefix is arbitrary and not semantically significant (see [XML
Namespaces [p.92]]).

wsdl

"http://www.w3.org/2006/01/wsdl"

Defined by this specification.

wsdli

"http://www.w3.org/2006/01/wsdl-instance"

Defined by this specification 7.1 wsdli:wsdlLocation attribute information item [p.88] .

wsdlx

"http://www.w3.org/2006/01/wsdl-extensions"

9

1.4 Notational Conventions

Defined by this specification 3.3 Describing Messages that Refer to Services and Endpoints [p.79]
.

wrpc

"http://www.w3.org/2006/01/wsdl/rpc"

Defined by WSDL 2.0: Adjuncts [WSDL 2.0 Adjuncts [p.92]].

wsoap

"http://www.w3.org/2006/01/wsdl/soap"

Defined by WSDL 2.0: Adjuncts [WSDL 2.0 Adjuncts [p.92]].

whttp

"http://www.w3.org/2006/01/wsdl/http"

Defined by WSDL 2.0: Adjuncts [WSDL 2.0 Adjuncts [p.92]].

xs

"http://www.w3.org/2001/XMLSchema"

Defined in the W3C XML Schema specification [XML Schema: Structures [p.92]], [XML Schema:
Datatypes [p.92]].

xsi

"http://www.w3.org/2001/XMLSchema-instance"

Defined in the W3C XML Schema specification [XML Schema: Structures [p.92]], [XML Schema:
Datatypes [p.92]].

1.4.5 Terms Used in This Specification

This section describes the terms and concepts introduced in Part 1 of the WSDL Version 2.0 specification
(this document).

Actual Value

As in [XML Schema: Structures [p.92]], the phrase actual value is used to refer to the member of the
value space of the simple type definition associated with an attribute information item which corre-
sponds to its normalized value. This will often be a string, but may also be an integer, a boolean, an
IRI-reference, etc.

Inlined Schema

10

1.4 Notational Conventions

An XML schema that is defined in the xs:types element information item of a WSDL 2.0 descrip-
tion. For example, an XML Schema defined in an xs:schema element information item 3.1.2 Inlin-
ing XML Schema [p.76] .

1.4.6 XML Information Set Properties

This specification refers to properties in the XML Information Set [XML Information Set [p.92]]. Such
properties are denoted by square brackets, e.g. [children], [attributes].

1.4.7 WSDL 2.0 Component Model Properties

This specification defines and refers to properties in the WSDL 2.0 Component Model 2. Component
Model [p.12] . Such properties are denoted by curly brackets, e.g. {name [p.18] }, {interfaces [p.14] }.

This specification uses a consistent naming convention for component model properties that refer to
components. If a property refers to a required or optional component, then the property name is the same
as the component name. If a property refers to a set of components, then the property name is the plural-
ized form of the component name.

1.4.8 Z Notation

Z Notation [Z Notation Reference Manual [p.94]] was used in the development of this specification. Z
Notation is a formal specification language that is based on standard mathematical notation. The Z Nota-
tion for this specification has been verified using the Fuzz 2000 type-checker [Fuzz 2000 [p.94]].

Since Z Notation is not widely known, it is not included the normative version of this specification.
However, it is included in a non-normative version which allows to dynamically hide and show the Z
Notation. Browsers correctly display the mathematical Unicode characters, provided that the required
fonts are installed. Mathematical fonts for Mozilla Firefox can be downloaded from the Mozilla Web site.

The Z Notation was used to improve the quality of the normative text that defines the Component Model,
and to help ensure that the test suite covered all important rules implied by the Component Model.
However, the Z Notation is non-normative, so any conflict between it and the normative text is an error in
the Z Notation. Readers and implementors may nevertheless find the Z Notation useful in cases where the
normative text is unclear.

There are two elements of Z Notation syntax that conflict with the notational conventions described in the
preceding sections. In Z Notation, square brackets are used to introduce basic sets, e.g. [ID], which
conflicts with the use of square brackets to denote XML Information Set properties 1.4.6 XML Informa-
tion Set Properties [p.11] . Also, in Z Notation, curly brackets are used to denote set display and set
comprehension, e.g. {1, 2, 3}, which conflicts with the use of curly brackets to denote WSDL 2.0 Compo-
nent Model properties 1.4.7 WSDL 2.0 Component Model Properties [p.11] . However, the intended
meaning of square and curly brackets should be clear from their context and this minor notational conflict
should not cause any confusion.

11

1.4 Notational Conventions

http://www.mozilla.org/projects/mathml/fonts/

1.4.9 BNF Pseudo-Schemas

Pseudo-schemas are provided for each component, before the description of the component. They use
BNF-style conventions for attributes and elements: "?" denotes optionality (i.e. zero or one occurrences),
"*" denotes zero or more occurrences, "+" one or more occurrences, "[" and "]" are used to form groups,
and "|" represents choice. Attributes are conventionally assigned a value which corresponds to their type,
as defined in the normative schema. Elements with simple content are conventionally assigned a value
which corresponds to the type of their content, as defined in the normative schema. Pseudo schemas do not
include extensibility points for brevity.

<!-- sample pseudo-schema -->
<defined_element
 required_attribute_of_type_string=" xs:string "
 optional_attribute_of_type_int=" xs:int "? >
 <required_element />
 <optional_element />?
 <one_or_more_of_these_elements />+
 [<choice_1 /> | <choice_2 />]*
</ defined_element>

1.4.10 Assertions

Assertions about WSDL 2.0 documents and components that are not enforced by the normative XML
schema for WSDL 2.0 are marked in the non-normative version of this specification by a dagger symbol
(†) at the end of a sentence. Each assertion has been assigned a unique identifier that consists of a descrip-
tive textual prefix and a unique numeric suffix. The numeric suffixes are assigned sequentially and never
reused so there may be gaps in the sequence. The assertion identifiers MAY be used by implementations
of this specification for any purpose, e.g. error reporting.

The assertions and their identifiers are summarized in an Assertion Summary Appendix that is included
the non-normative version of this specification.

2. Component Model
This section describes the conceptual model of WSDL 2.0 as a set of components with attached properties,
which collectively describe a Web service. This model is called the Component Model of WSDL 2.0. A
valid WSDL 2.0 component model is a set of WSDL 2.0 components and properties that satisfy all the
requirements given in this specification as indicated by keywords whose interpretation is defined by RFC
2119 [IETF RFC 2119 [p.91]].

Components are typed collections of properties that correspond to different aspects of Web services. Each
subsection herein describes a different type of component, its defined properties, and its representation as
an XML Infoset [XML Information Set [p.92]].

Properties are unordered and unique with respect to the component they are associated with. Individual
properties’ definitions may constrain their content (e.g., to a typed value, another component, or a set of
typed values or components), and components may require the presence of a property to be considered
conformant. Such properties are marked as REQUIRED, whereas those that are not required to be present
are marked as OPTIONAL. By convention, when specifying the mapping rules from the XML Infoset

12

2. Component Model

representation of a component to the component itself, an optional property that is absent in the compo-
nent in question is described as being “empty”. Unless otherwise specified, when a property is identified
as being a collection (a set or a list), its value may be a 0-element (empty) collection. In order to simplify
the presentation of the rules that deal with sets of components, for all OPTIONAL properties whose type
is a set, the absence of such a property from a component MUST be treated as semantically equivalent to
the presence of a property with the same name and whose value is the empty set. In other words, every
OPTIONAL set-valued property MUST be assumed to have the empty set as its default value, to be used
in case the property is absent.

Component definitions are serializable in XML 1.0 format but are independent of any particular serializa-
tion of the component model. Component definitions use a subset (see 2.16 XML Schema 1.0 Simple
Types Used in the Component Model [p.71]) of the simple types defined by the XML Schema 1.0 spec-
ification [XML Schema: Datatypes [p.92]].

In addition to the direct XML Infoset representation described here, the component model allows compo-
nents external to the Infoset through the mechanisms described in 4. Modularizing WSDL 2.0 descrip-
tions [p.80] .

A component model can be extracted from a given XML Infoset which conforms to the XML Schema for
WSDL 2.0 by recursively mapping Information Items to their identified components, starting with the
wsdl:description element information item. This includes the application of the mechanisms
described in 4. Modularizing WSDL 2.0 descriptions [p.80] .

This document does not specify a means of producing an XML Infoset representation from a component
model instance. In particular, there are in general many valid ways to modularize a given component
model instance into one or more XML Infosets.

2.1 Description

2.1.1 The Description Component

At the abstract level, the Description [p.14] component is just a container for two categories of compo-
nents: WSDL 2.0 components and type system components.

WSDL 2.0 components are interfaces, bindings and services. Type system components are element decla-
rations and type definitions.

Type system components describe the constraints on a message’s content. By default, these constraints are
expressed in terms of the [XML Information Set [p.92]], i.e. they define the [local name], [namespace
name], [children] and [attributes] properties of an element information item. Type systems based upon
other data models are generally accommodated by extensions to WSDL 2.0; see 6. Language Extensibil-
ity [p.85] . In the case where they define information equivalent to that of a XML Schema global element
declaration, they can be treated as if they were such a declaration.

This specification does not define the behavior of a WSDL 2.0 document that uses multiple schema
languages for describing type system components simultaneously.

13

2.1 Description

An Element Declaration component defines the name and content model of an element information item
such as that defined by an XML Schema global element declaration. It has a {name} property that is the
QName of the element information item and a {system} property that is the namespace IRI of the exten-
sion element information items for the type system, e.g. the namespace of XML Schema.

A Type Definition component defines the content model of an element information item such as that
defined by an XML Schema global type definition. It has a {name} property that is the QName of the type
and a {system} property that is the namespace IRI of the extension element information items for the type
system, e.g. the namespace of XML Schema.

Interface [p.18] , Binding [p.50] , Service [p.65] , Element Declaration [p.14] , and Type Definition [p.14]
components are directly contained in the Description [p.14] component and are referred to as top-level
components. The top-level WSDL 2.0 components contain other components, e.g. Interface Operation
[p.26] and Endpoint [p.68] , which are referred to as nested components. Nested components may contain
other nested components. The component that contains a nested component is referred to as the parent of
the nested components. Nested components have a {parent} property that is a reference to their parent
component.

The properties of the Description component are as follows:

{interfaces} OPTIONAL. A set of Interface [p.18] components.

{bindings} OPTIONAL. A set of Binding [p.50] components.

{services} OPTIONAL. A set of Service [p.65] components.

{element declarations} OPTIONAL. A set of Element Declaration [p.14] components.

{type definitions} OPTIONAL. A set of Type Definition [p.14] components.

The set of top-level components contained in the Description [p.14] component associated with an initial
WSDL 2.0 document consists of the components defined in the initial document and the components asso-
ciated with the documents that the initial document includes or imports. The component model makes no
distinction between the components that are defined in the initial document versus those that are defined in
the included or imported documents. However, any WSDL 2.0 document that contains component defini-
tions that refer by QName to WSDL 2.0 components that belong to a different namespace MUST contain
a wsdl:import element information item for that namespace (see 4.2 Importing Descriptions [p.82]).
Furthermore, all QName references, whether to the same or to different namespaces MUST resolve to
components (see 2.19 QName resolution [p.72]).

In addition to WSDL 2.0 components and type system components, additional extension components
MAY be added via extensibility 6. Language Extensibility [p.85] . Further, additional properties to
WSDL 2.0 and type system components MAY also be added via extensibility.

14

2.1 Description

2.1.2 XML Representation of Description Component

<description
 targetNamespace=" xs:anyURI " >
 <documentation />*
 [<import /> | <include />]*
 <types />?
 [<interface /> | <binding /> | <service />]*
</ description>

WSDL 2.0 definitions are represented in XML by one or more WSDL 2.0 Information Sets (Infosets), that
is one or more description element information items. A WSDL 2.0 Infoset contains representations
for a collection of WSDL 2.0 components which share a common target namespace. A WSDL 2.0 Infoset
which contains one or more wsdl:import element information items 4.2 Importing Descriptions
[p.82] corresponds to a collection with components drawn from multiple target namespaces.

The components directly defined or included within a Description [p.14] component are said to belong to
the same target namespace. The target namespace therefore groups a set of related component definitions
and represents an unambiguous name for the intended semantics of the collection of components. The
value of the targetNamespace attribute information item SHOULD be dereferenceable. It SHOULD
resolve to a human or machine processable document that directly or indirectly defines the intended
semantics of those components. It MAY resolve to a WSDL 2.0 document which provides service descrip-
tion information for that namespace.

If a WSDL 2.0 document is split into multiple WSDL 2.0 documents (which may be combined as needed
via 4.1 Including Descriptions [p.80]), then the targetNamespace attribute information item
SHOULD resolve to a master WSDL 2.0 document that includes all the WSDL 2.0 documents needed for
that service description. This approach enables the WSDL 2.0 component designator fragment identifiers
to be properly resolved.

Imported components have different target namespace values from the WSDL 2.0 document that is
importing them. Thus importing is the mechanism to use components from one namespace in definition of
components from another namespace.

Each WSDL 2.0 or type system component MUST be uniquely identified by its qualified name. That is, if
two distinct components of the same kind (Interface [p.18] , Binding [p.50] , etc.) are in the same target
namespace, then their QNames MUST be unique. However, different kinds of components (e.g., an Inter-
face [p.18] component and a Binding [p.50] component) MAY have the same QName. Thus, QNames of
components must be unique within the space of those components in a given target namespace.

The description element information item has the following Infoset properties:

A [local name] of description .

A [namespace name] of "http://www.w3.org/2006/01/wsdl".

One or more attribute information items amongst its [attributes] as follows:

15

2.1 Description

A REQUIRED targetNamespace attribute information item as described below in 2.1.2.1
targetNamespace attribute information item [p.16] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information items amongst its [children], in order as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more include element information items (see 4.1 Including Descriptions [p.80]
)

Zero or more import element information items (see 4.2 Importing Descriptions [p.82])

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl".

3. An OPTIONAL types element information item (see 3. Types [p.73]).

4. Zero or more element information items from among the following, in any order:

interface element information items (see 2.2.2 XML Representation of Interface
Component [p.19]).

binding element information items (see 2.9.2 XML Representation of Binding Compo-
nent [p.50]).

service element information items (see 2.14.2 XML Representation of Service
Component [p.66]).

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl".

2.1.2.1 targetNamespace attribute information item

The targetNamespace attribute information item defines the namespace affiliation of top-level
components defined in this description element information item. Interface [p.18] , Binding [p.50]
and Service [p.65] are top-level components.

The targetNamespace attribute information item has the following Infoset properties:

A [local name] of targetNamespace

A [namespace name] which has no value

16

2.1 Description

The type of the targetNamespace attribute information item is xs:anyURI. Its value MUST be an
absolute IRI (see [IETF RFC 3987 [p.92]]) and should be dereferenceable.

2.1.3 Mapping Description’s XML Representation to Component Properties

The mapping from the XML Representation of the description element information item (see 2.1.2
XML Representation of Description Component [p.15]) to the properties of the Description [p.14]
component is described in Table 2-1 [p.17] .

Table 2-1. Mapping from XML Representation to Description Component Properties

Property Value

{interfaces [p.14] }

The set of Interface [p.18] components corresponding to all the interface
element information items in the [children] of the description element infor-
mation item, if any, plus any included (via wsdl:include) or imported (via
wsdl:import) Interface [p.18] components (see 4. Modularizing WSDL 2.0
descriptions [p.80]).

{bindings [p.14] }

The set of Binding [p.50] components corresponding to all the binding element
information items in the [children] of the description element information
item, if any, plus any included (via wsdl:include) or imported (via
wsdl:import) Binding [p.50] components (see 4. Modularizing WSDL 2.0
descriptions [p.80]).

{services [p.14] }

The set of Service [p.65] components corresponding to all the service element
information items in the [children] of the description element information
item, if any, plus any included (via wsdl:include) or imported (via
wsdl:import) Service [p.65] components (see 4. Modularizing WSDL 2.0
descriptions [p.80]).

{element declara-
tions [p.14] }

The set of Element Declaration [p.14] components corresponding to all the element
declarations defined as descendants of the types element information item, if any,
plus any included (via xs:include) or imported (via xs:import) Element
Declaration [p.14] components. At a minimum this will include all the global
element declarations defined by XML Schema element element information
items. It MAY also include any declarations from some other type system which
describes the [local name], [namespace name], [attributes] and [children] properties
of an element information item.

{type definitions
[p.14] }

The set of Type Definition [p.14] components corresponding to all the type defini-
tions defined as descendants of the types element information item, if any, plus
any (via xs:include) or imported (via xs:import) Type Definition [p.14]
components. At a minimum this will include all the global type definitions defined
by XML Schema simpleType and complexType element information items. It
MAY also include any definitions from some other type system which describes
the [attributes] and [children] properties of an element information item. It is an
error if there are multiple type definitions for each QName.

17

2.1 Description

2.2 Interface

2.2.1 The Interface Component

An Interface [p.18] component describes sequences of messages that a service sends and/or receives. It
does this by grouping related messages into operations. An operation is a sequence of input and output
messages, and an interface is a set of operations.

An interface can optionally extend one or more other interfaces. To avoid circular definitions, an interface
MUST NOT appear as an element of the set of interfaces it extends, either directly or indirectly. The set of
operations available in an interface includes all the operations defined by the interfaces it extends, along
with any operations it directly defines. The operations directly defined on an interface are referred to as
the declared operations of the interface. In the process, operation components that are equivalent per 2.17
Equivalence of Components [p.71] are treated as one. The interface extension mechanism behaves in a
similar way for all other components that can be defined inside an interface, namely Interface Fault [p.22]
, Feature [p.40] and Property [p.44] components.

Interfaces are named constructs and can be referred to by QName (see 2.19 QName resolution [p.72]).
For instance, Binding [p.50] components refer to interfaces in this way.

The properties of the Interface component are as follows:

{name} REQUIRED. An xs:QName.

{extended interfaces} OPTIONAL. A set of declared Interface [p.18] components which this inter-
face extends.

{interface faults} OPTIONAL. The set of declared Interface Fault [p.22] components. The names-
pace name of the {name [p.22] } property of each Interface Fault [p.22] in this set MUST be the same
as the namespace name of the {name [p.18] } property of this Interface [p.18] component.

{interface operations} OPTIONAL. A set of declared Interface Operation [p.26] components. The
namespace name of the {name [p.26] } property of each Interface Operation [p.26] in this set MUST
be the same as the namespace name of the {name [p.18] } property of this Interface [p.18] compo-
nent.

{features} OPTIONAL. A set of declared Feature [p.40] components.

{properties} OPTIONAL. A set of declared Property [p.44] components.

For each Interface [p.18] component in the {interfaces [p.14] } property of a Description [p.14] compo-
nent, the {name [p.18] } property MUST be unique.

18

2.2 Interface

2.2.2 XML Representation of Interface Component

<description>
 < interface
 name=" xs:NCName"
 extends=" list of xs:QName "?
 styleDefault=" list of xs:anyURI "? >
 <documentation />*
 [<fault /> | <operation /> | <feature /> | <property />]*
 </ interface>
</description>

The XML representation for an Interface [p.18] component is an element information item with the
following Infoset properties:

A [local name] of interface

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.2.2.1 name attribute
information item with interface [owner element] [p.20] .

An OPTIONAL extends attribute information item as described below in 2.2.2.2 extends
attribute information item [p.20] .

An OPTIONAL styleDefault attribute information item as described below in 2.2.2.3
styleDefault attribute information item [p.20] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information items amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more fault element information items 2.3.2 XML Representation of Interface
Fault Component [p.23] .

Zero or more operation element information items 2.4.2 XML Representation of
Interface Operation Component [p.28] .

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.43] .

19

2.2 Interface

Zero or more property element information items 2.8.2 XML Representation of Prop-
erty Component [p.47] .

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl".

2.2.2.1 name attribute information item with interface [owner element]

The name attribute information item together with the targetNamespace attribute information item
of the [parent] description element information item forms the QName of the interface.

The name attribute information item has the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.2.2.2 extends attribute information item

The extends attribute information item lists the interfaces that this interface derives from.

The extends attribute information item has the following Infoset properties:

A [local name] of extends

A [namespace name] which has no value

The type of the extends attribute information item is a list of xs:QName.

2.2.2.3 styleDefault attribute information item

The styleDefault attribute information item indicates the default style (see 2.4.1.2 Operation Style
[p.28]) used to construct the {element declaration [p.32] } properties of {interface message references
[p.26] } of all operations contained within the [owner element] interface .

The styleDefault attribute information item has the following Infoset properties:

A [local name] of styleDefault.

A [namespace name] which has no value.

The type of the styleDefault attribute information item is list of xs:anyURI. Its value, if present,
MUST contain absolute IRIs (see [IETF RFC 3987 [p.92]]).

20

2.2 Interface

2.2.3 Mapping Interface’s XML Representation to Component Properties

The mapping from the XML Representation of the interface element information item (see 2.2.2
XML Representation of Interface Component [p.19]) to the properties of the Interface [p.18] compo-
nent is as described in Table 2-2 [p.21] .

Table 2-2. Mapping from XML Representation to Interface Component Properties

Property Value

{name [p.18] }
The QName whose local name is actual value of the name attribute information
item and whose namespace name is the actual value of the targetNamespace
attribute information item of the [parent] description element information item

{extended inter-
faces [p.18] }

The set of Interface [p.18] components resolved to by the values in the extends
attribute information item, if any (see 2.19 QName resolution [p.72]).

{interface faults
[p.18] }

The set of Interface Fault [p.22] components corresponding to the fault element
information items in [children], if any.

{interface opera-
tions [p.18] }

The set of Interface Operation [p.26] components corresponding to the opera-
tion element information items in [children], if any.

{features [p.18] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties [p.18]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

Recall that, per 2.2.1 The Interface Component [p.18] , the Interface [p.18] components in the {extended
interfaces [p.18] } property of a given Interface [p.18] component MUST NOT contain that Interface
[p.18] component in any of their {extended interfaces [p.18] } properties, that is to say, recursive exten-
sion of interfaces is disallowed.

2.3 Interface Fault

2.3.1 The Interface Fault Component

A fault is an event that occurs during the execution of a message exchange that disrupts the normal flow of
messages.

A fault is typically raised when a party is unable to communicate an error condition inside the normal
message flow, or a party wishes to terminate a message exchange. A fault message may be used to
communicate out of band information such as the reason for the error, the origin of the fault, as well as
other informal diagnostics such as a program stack trace.

An Interface Fault [p.22] component describes a fault that MAY occur during invocation of an operation
of the interface. The Interface Fault [p.22] component declares an abstract fault by naming it and indicat-
ing the contents of the fault message. When and how the fault message flows is indicated by the Interface

21

2.3 Interface Fault

Operation [p.26] component.

The Interface Fault [p.22] component provides a clear mechanism to name and describe the set of faults an
interface may generate. This allows operations to easily identify the individual faults they may generate by
name. This mechanism allows the ready identification of the same fault occurring across multiple opera-
tions and referenced in multiple bindings as well as reducing duplication of description for an individual
fault.

Faults other than the ones described in the Interface [p.18] component may also be generated at run-time,
i.e. faults are an open set. The Interface [p.18] component describes faults that have application level
semantics, i.e. that the client or service is expected to handle, and potentially recover from, as part of the
application processing logic. For example, an Interface [p.18] component that accepts a credit card number
may describe faults that indicate the credit card number is invalid, has been reported stolen, or has expired.
The Interface [p.18] component does not describe general system faults such as network failures, out of
memory conditions, out of disk space conditions, invalid message formats, etc., although these faults may
be generated as part of the message exchange. Such general system faults can reasonably be expected to
occur in any message exchange and explicitly describing them in an Interface [p.18] component is there-
fore uninformative.

The properties of the Interface Fault component are as follows:

{name} REQUIRED. An xs:QName.

{element declaration} OPTIONAL. A reference to a Element Declaration [p.14] component in the
{element declarations [p.14] } property of the Description [p.14] component. This element represents
the content or “payload” of the fault.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

{parent} REQUIRED. The Interface [p.18] component that contains this component in its {interface
faults [p.18] } property.

For each Interface Fault [p.22] component in the {interface faults [p.18] } property of an Interface [p.18]
component, the {name [p.22] } property must be unique.

Interface Fault [p.22] components are uniquely identified by the the QName of the enclosing Interface
[p.18] component and QName of the Interface Fault [p.22] component itself.

Note:

Despite having a {name [p.22] } property, Interface Fault [p.22] components cannot be identified solely
by their QName. Indeed, two Interface [p.18] components whose {name [p.18] } property value has the
same namespace name, but different local names, can contain Interface Fault [p.22] components with the
same {name [p.22] } property value. Thus, the {name [p.22] } property of Interface Fault [p.22] compo-
nent is not sufficient to form the unique identity of an Interface Fault [p.22] component. A method for
uniquely identifying components is defined in A.2 Fragment Identifiers [p.96] . See A.2.5 The Interface
Fault Component [p.98] for the definition of the fragment identifier for the Interface Fault [p.22] compo-

22

2.3 Interface Fault

nent.

In cases where, due to an interface extending one or more other interfaces, two or more Interface Fault
[p.22] components have the same value for their {name [p.22] } property, then the component models of
those Interface Fault [p.22] components MUST be equivalent (see 2.17 Equivalence of Components
[p.71]). If the Interface Fault [p.22] components are equivalent then they are considered to collapse into a
single component. It is an error if two Interface Fault [p.22] components that are available in the same
Interface [p.18] component have the same value for their {name [p.22] } properties but are not equivalent.

Note that, due to the above rules, if two interfaces that have the same value for the namespace name of
their {name [p.18] } property also have one or more faults that have the same value for their {name [p.22]
} property then those two interfaces cannot both form part of the derivation chain of a derived interface
unless those faults are the same fault.

Note:

For the above reason, it is considered good practice to ensure, where necessary, that the local name of the
{name [p.22] } property of Interface Fault [p.22] components within a namespace are unique, thus allow-
ing such derivation to occur without inadvertent error.

If a type system NOT based on the XML Infoset [XML Information Set [p.92]] is in use (as considered in
3.2 Using Other Schema Languages [p.78]) then additional properties would need to be added to the
Interface Fault [p.22] component (along with extensibility attributes to its XML representation) to allow
associating such message types with the message reference.

2.3.2 XML Representation of Interface Fault Component

<description>
 <interface>
 < fault
 name=" xs:NCName"
 element=" xs:QName"? >
 <documentation />*
 [<feature /> | <property />]*
 </ fault>
 </interface>
</description>

The XML representation for an Interface Fault [p.22] component is an element information item with the
following Infoset properties:

A [local name] of fault

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.3.2.1 name attribute
information item with fault [owner element] [p.24] .

23

2.3 Interface Fault

An OPTIONAL element attribute information item as described below in 2.3.2.2 element
attribute information item with fault [owner element] [p.24] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.43]

Zero or more property element information items 2.8.2 XML Representation of Prop-
erty Component [p.47]

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl".

2.3.2.1 name attribute information item with fault [owner element]

The name attribute information item identifies a given fault element information item inside a given
interface element information item.

The name attribute information item has the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.3.2.2 element attribute information item with fault [owner element]

The element attribute information item refers, by QName, to an Element Declaration [p.14] component.

The element attribute information item has the following Infoset properties:

A [local name] of element .

A [namespace name] which has no value.

The type of the element attribute information item is xs:QName.

24

2.3 Interface Fault

2.3.3 Mapping Interface Fault’s XML Representation to Component Properties

The mapping from the XML Representation of the fault element information item (see 2.3.2 XML
Representation of Interface Fault Component [p.23]) to the properties of the Interface Fault [p.22]
component is as described in Table 2-3 [p.25] .

Table 2-3. Mapping from XML Representation to Interface Fault Component Properties

Property Value

{name [p.22] }

The QName whose local name is the actual value of the name attribute informa-
tion item. and whose namespace name is the actual value of the targetNames-
pace attribute information item of the [parent] description element informa-
tion item of the [parent] interface element information item.

{element declara-
tion [p.22] }

The Element Declaration [p.14] component from the {element declarations [p.14] }
property of the Description [p.14] component resolved to by the value of the
element attribute information item if present (see 2.19 QName resolution [p.72]
), otherwise empty. It is an error for the element attribute information item to
have a value and for it to not resolve to an Element Declaration [p.14] component
from the {element declarations [p.14] } property of the Description [p.14] compo-
nent.

{features [p.22] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties [p.22]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

{parent [p.22] }
The Interface [p.18] component corresponding to the interface element infor-
mation item in [parent].

2.4 Interface Operation

2.4.1 The Interface Operation Component

An Interface Operation [p.26] component describes an operation that a given interface supports. An opera-
tion is an interaction with the service consisting of a set of (ordinary and fault) messages exchanged
between the service and the other parties involved in the interaction. The sequencing and cardinality of the
messages involved in a particular interaction is governed by the message exchange pattern used by the
operation (see {message exchange pattern [p.26] } property).

A message exchange pattern defines placeholders for messages, the participants in the pattern (i.e., the
sources and sinks of the messages), and the cardinality and sequencing of messages exchanged by the
participants. The message placeholders are associated with specific message types by the operation that
uses the pattern by means of message and fault references (see {interface message references [p.26] } and
{interface fault references [p.26] } properties). The service whose operation is using the pattern becomes
one of the participants of the pattern. This specification does not define a machine understandable

25

2.4 Interface Operation

language for defining message exchange patterns, nor does it define any specific patterns. The companion
specification, [WSDL 2.0 Adjuncts [p.92]] defines a set of such patterns and defines identifying IRIs any
of which MAY be used as the value of the {message exchange pattern [p.26] } property.

The properties of the Interface Operation component are as follows:

{name} REQUIRED. An xs:QName.

{message exchange pattern} REQUIRED. An xs:anyURI identifying the message exchange pattern
used by the operation. This xs:anyURI MUST be an absolute IRI (see [IETF RFC 3987 [p.92]]).

{interface message references} OPTIONAL. A set of Interface Message Reference [p.32] compo-
nents for the ordinary messages the operation accepts or sends.

{interface fault references} OPTIONAL. A set of Interface Fault Reference [p.36] components for
the fault messages the operation accepts or sends.

{style} OPTIONAL. A set of xs:anyURIs identifying the rules that were used to construct the
{element declaration [p.32] } properties of {interface message references [p.26] }. (See 2.4.1.2 Oper-
ation Style [p.28] .) These xs:anyURIs MUST be absolute IRIs (see [IETF RFC 3986 [p.92]]).

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

{parent} REQUIRED. The Interface [p.18] component that contains this component in its {interface
operations [p.18] } property.

For each Interface Operation [p.26] component in the {interface operations [p.18] } property of an Inter-
face [p.18] component, the {name [p.26] } property MUST be unique.

Interface Operation [p.26] components are uniquely identified by the the QName of the enclosing Inter-
face [p.18] component and QName of the Interface Operation [p.26] component itself.

Note:

Despite having a {name [p.26] } property, Interface Operation [p.26] components cannot be identified
solely by their QName. Indeed, two Interface [p.18] components whose {name [p.18] } property value has
the same namespace name, but different local names, can contain Interface Operation [p.26] components
with the same {name [p.26] } property value. Thus, the {name [p.26] } property of Interface Operation
[p.26] components is not sufficient to form the unique identity of an Interface Operation [p.26] compo-
nent. A method for uniquely identifying components is defined in A.2 Fragment Identifiers [p.96] . See
A.2.6 The Interface Operation Component [p.98] for the definition of the fragment identifier for the
Interface Operation [p.26] component.

In cases where, due to an interface extending one or more other interfaces, two or more Interface Opera-
tion [p.26] components have the same value for their {name [p.26] } property, then the component models
of those Interface Operation components MUST be equivalent (see 2.17 Equivalence of Components
[p.71]). If the Interface Operation [p.26] components are equivalent then they are considered to collapse

26

2.4 Interface Operation

into a single component. It is an error if two Interface Operation components have the same value for their
{name [p.26] } property but are not equivalent.

Note that, due to the above rules, if two interfaces that have the same value for the namespace name of
their {name [p.18] } property also have one or more operations that have the same value for their {name
[p.26] } property then those two interfaces cannot both form part of the derivation chain of a derived inter-
face unless those operations are the same operation.

Note:

For the above reason, it is considered good practice to ensure, where necessary, that the {name [p.26] }
property of Interface Operation [p.26] components within a namespace are unique, thus allowing such
derivation to occur without inadvertent error.

More than one Interface Fault Reference [p.36] component in the {interface fault references [p.26] } prop-
erty of an Interface Operation [p.26] component may refer to the same message label. In that case, the
listed fault types define alternative fault messages. This allows one to indicate that there is more than one
type of fault that is related to that message.

2.4.1.1 Message Exchange Pattern

This section describes some aspects of message exchange patterns in more detail. Refer to the WSDL
Version 2.0 Part 2: Adjuncts specification [WSDL 2.0 Adjuncts [p.92]] for a complete discussion of the
semantics of message exchange patterns in general as well as the definitions of the message exchange
patterns that are predefined by WSDL 2.0.

A placeholder message is a template for an actual message as described by an Interface Message Refer-
ence [p.32] component. Although a placeholder message is not itself a component, it is useful to regard it
as having both a {message label [p.32] } and a {direction [p.32] } property which define the values of the
actual Interface Message Reference [p.32] component that corresponds to it. A placeholder message is
also associated with some node that exchanges the message with the service. Furthermore, a placeholder
message may be designated as optional in the exchange.

A fault propagation ruleset specifies the relation between the Interface Fault Reference [p.36] and Inter-
face Message Reference [p.32] components of an Interface Operation [p.26] component. The WSDL
Version 2.0 Part 2: Adjuncts specification [WSDL 2.0 Adjuncts [p.92]] defines three fault propagation
rulesets which we’ll refer to as fault-replaces-message , message-triggers-fault , and no-faults . These
fault propagation rulesets are used by the predefined message exchange patterns. Other message exchange
patterns may define additional fault propagation rulesets.

A message exchange pattern is a template for the exchange of one or more messages, and their associated
faults, between the service and one or more other nodes as described by an Interface Operation [p.26]
component. The service and the other nodes are referred to as the participants in the exchange. A message
exchange pattern consists of a sequence of one or more placeholder messages. Each placeholder message
within this sequence is uniquely identified by its {message label [p.32] } property. A message exchange
pattern is uniquely identified by an absolute IRI which is used as the value of the {message exchange
pattern [p.26] } property of the Interface Operation [p.26] component, and it specifies the fault propaga-
tion ruleset that its faults obey.

27

2.4 Interface Operation

2.4.1.2 Operation Style

An operation style specifies additional information about an operation. For example, an operation style
may define structural constraints on the element declarations of the interface message reference or inter-
face fault components used by the operation. This additional information in no way affects the messages
and faults exchanged with the service and it may therefore be safely ignored in that context. However, the
additional information may be used for other purposes, for example, improved code generation. The {style
[p.26] } property of the Interface Operation [p.26] component contains a set of zero or more IRIs that
identify operation styles. An Interface Operation [p.26] component MUST satisfy the specification defined
by each operation style identified by its {style [p.26] } property. If no Interface Operation [p.26] compo-
nent can simultaneously satisfy all of the styles, the document is invalid.

If the {style [p.26] } property of an Interface Operation [p.26] component does have a value, then that
value (a set of IRIs) specifies the rules that were used to define the element declarations (or other proper-
ties that define the message and fault contents; see 3.2 Using Other Schema Languages [p.78]) of the
Interface Message Reference [p.32] or Interface Fault [p.22] components used by the operation. Although
a given operation style has the ability to constrain all input and output messages and faults of an operation,
it MAY choose to constrain any combination thereof, e.g. only the messages, or only the inputs.

Please refer to the WSDL Version 2.0 Part 2: Adjuncts specification [WSDL 2.0 Adjuncts [p.92]] for
particular operation style definitions.

2.4.2 XML Representation of Interface Operation Component

<description>
 <interface>
 < operation
 name=" xs:NCName"
 pattern=" xs:anyURI "
 style=" list of xs:anyURI "? >
 <documentation />*
 [<feature /> | <property /> |
 [<input /> | <output /> | <infault /> | <outfault />]+
]*
 </ operation>
 </interface>
</description>

The XML representation for an Interface Operation [p.26] component is an element information item with
the following Infoset properties:

A [local name] of operation

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

Two or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.4.2.1 name attribute
information item with operation [owner element] [p.29] .

28

2.4 Interface Operation

A REQUIRED pattern attribute information item as described below in 2.4.2.2 pattern
attribute information item with operation [owner element] [p.30] .

An OPTIONAL style attribute information item as described below in 2.4.2.3 style attribute
information item with operation [owner element] [p.30] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

One or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. One or more element information items from among the following, in any order:

One or more element information items from among the following, in any order:

Zero or more input element information items (see 2.5.2 XML Representation of
Interface Message Reference Component [p.32]).

Zero or more output element information items (see 2.5.2 XML Representation of
Interface Message Reference Component [p.32]).

Zero or more infault element information items (see 2.6.2 XML Representation
of Interface Fault Reference [p.36]).

Zero or more outfault element information items (see 2.6.2 XML Representation
of Interface Fault Reference [p.36]).

Zero or more element information items from among the following, in any order:

A feature element information item (see 2.7.2 XML Representation of Feature
Component [p.43]).

A property element information item (see 2.8.2 XML Representation of Property
Component [p.47]).

Zero or more namespace-qualified element information items whose [namespace
name] is NOT "http://www.w3.org/2006/01/wsdl".

2.4.2.1 name attribute information item with operation [owner element]

The name attribute information item identifies a given operation element information item inside a
given interface element information item.

The name attribute information item has the following Infoset properties:

29

2.4 Interface Operation

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.4.2.2 pattern attribute information item with operation [owner element]

The pattern attribute information item identifies the message exchange pattern a given operation uses.

The pattern attribute information item has the following Infoset properties:

A [local name] of pattern

A [namespace name] which has no value

The type of the pattern attribute information item is xs:anyURI. Its value MUST be an absolute IRI
(see [IETF RFC 3987 [p.92]]).

2.4.2.3 style attribute information item with operation [owner element]

The style attribute information item indicates the rules that were used to construct the {element declara-
tion [p.32] } properties of the Interface Message Reference [p.32] components which are members of the
{interface message references [p.26] } property of the [owner element] operation.

The style attribute information item has the following Infoset properties:

A [local name] of style

A [namespace name] which has no value

The type of the style attribute information item is list of xs:anyURI. Its value MUST be an absolute IRI
(see [IETF RFC 3987 [p.92]]).

2.4.3 Mapping Interface Operation’s XML Representation to Component Properties

The mapping from the XML Representation of the operation element information item (see 2.4.2
XML Representation of Interface Operation Component [p.28]) to the properties of the Interface
Operation component (see 2.4.1 The Interface Operation Component [p.25]) is as described in Table
2-4 [p.30] .

30

2.4 Interface Operation

Table 2-4. Mapping from XML Representation to Interface Operation Component Properties

Property Value

{name [p.26] }

The QName whose local name is the actual value of the name attribute informa-
tion item and whose namespace name is the actual value of the targetNames-
pace attribute information item of the [parent] description element informa-
tion item of the [parent] interface element information item.

{message
exchange pattern
[p.26] }

The actual value of the pattern attribute information item; otherwise
’http://www.w3.org/2006/01/wsdl/in-out’.

{interface message
references [p.26] }

The set of message references corresponding to the input and output element
information items in [children], if any.

{interface fault
references [p.26] }

The set of interface fault references corresponding to the infault and
outfault element information items in [children], if any.

{style [p.26] }

The set containing the IRIs in the actual value of the style attribute information
item, if present; otherwise the set containing the IRIs in the actual value of the
styleDefault attribute information item of the [parent] interface element
information item, if present; otherwise empty.

{features [p.26] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties [p.26]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

{parent [p.26] }
The Interface [p.18] component corresponding to the interface element infor-
mation item in [parent].

2.5 Interface Message Reference

2.5.1 The Interface Message Reference Component

An Interface Message Reference [p.32] component associates a defined element with a message
exchanged in an operation. By default, the element is defined in the XML Infoset [XML Information Set
[p.92]].

A message exchange pattern defines a set of placeholder messages that participate in the pattern and
assigns them unique message labels within the pattern (e.g. ’In’, ’Out’). The purpose of an Interface
Message Reference [p.32] component is to associate an actual message element (XML element declaration
or some other declaration (see 3.2 Using Other Schema Languages [p.78])) with a message in the
pattern, as identified by its message label. Later, when the message exchange pattern is instantiated,
messages corresponding to that particular label will follow the element assignment made by the Interface
Message Reference [p.32] component.

31

2.5 Interface Message Reference

The properties of the Interface Message Reference component are as follows:

{message label} REQUIRED. An xs:NCName. This property identifies the role this message plays in
the {message exchange pattern [p.26] } of the Interface Operation [p.26] component this message is
contained within. The value of this property MUST match the name of a placeholder message defined
by the message exchange pattern.

{direction} REQUIRED. An xs:token with one of the values in or out, indicating whether the
message is coming to the service or going from the service, respectively. The direction MUST be the
same as the direction of the message identified by the {message label [p.32] } property in the
{message exchange pattern [p.26] } of the Interface Operation [p.26] component this is contained
within.

{message content model} REQUIRED. An xs:token with one of the values #any, #none, #other, or
#element. A value of #any indicates that the message content is any single element. A value of #none
indicates there is no message content. A value of #other indicates that the message content is
described by some other extension property that references a declaration in a non-XML extension
type system. A value of #element indicates that the message consists of a single element described by
the global element declaration referenced by the {element declaration [p.32] } property. This property
is used only when the message is described using an XML based data model.

{element declaration} OPTIONAL. A reference to an XML element declaration in the {element
declarations [p.14] } property of the Description component. This element represents the content or
“payload” of the message. When the {message content model [p.32] } property has the value #any or
#none the {element declaration [p.32] } property MUST be empty.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

{parent} REQUIRED. The Interface Operation [p.26] component that contains this component in its
{interface message references [p.26] } property.

For each Interface Message Reference [p.32] component in the {interface message references [p.26] }
property of an Interface Operation [p.26] component, its {message label [p.32] } property MUST be
unique.

If a type system not based upon the XML Infoset is in use (as considered in 3.2 Using Other Schema
Languages [p.78]) then additional properties would need to be added to the Interface Message Reference
[p.32] component (along with extensibility attributes to its XML representation) to allow associating such
message types with the message reference.

2.5.2 XML Representation of Interface Message Reference Component

<description>
 <interface>
 <operation>
 < input
 messageLabel=" xs:NCName"?

32

2.5 Interface Message Reference

 element=" union of xs:QName, xs:token "? >
 <documentation />*
 [<feature /> | <property />]*
 </ input>
 < output
 messageLabel=" xs:NCName"?
 element=" union of xs:QName, xs:token "? >
 <documentation />*
 [<feature /> | <property />]*
 </ output>
 </operation>
 </interface>
</description>

The XML representation for an Interface Message Reference [p.32] component is an element information
item with the following Infoset properties:

A [local name] of input or output

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

Zero or more attribute information items amongst its [attributes] as follows:

An OPTIONAL messageLabel attribute information item as described below in 2.5.2.1
messageLabel attribute information item with input or output [owner element] [p.34] .

An OPTIONAL element attribute information item as described below in 2.5.2.2 element
attribute information item with input or output [owner element] [p.34] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.43]

Zero or more property element information items 2.8.2 XML Representation of Prop-
erty Component [p.47]

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl".

33

2.5 Interface Message Reference

2.5.2.1 messageLabel attribute information item with input or output [owner element]

The messageLabel attribute information item identifies the role of this message in the message
exchange pattern of the given operation element information item.

The messageLabel attribute information item has the following Infoset properties:

A [local name] of messageLabel

A [namespace name] which has no value

The type of the messageLabel attribute information item is xs:NCName.

2.5.2.2 element attribute information item with input or output [owner element]

The element attribute information item has the following Infoset properties:

A [local name] of element .

A [namespace name] which has no value.

The type of the element attribute information item is a union of xs:QName and xs:token where the
allowed token values are #any, #none, or #other.

2.5.3 Mapping Interface Message Reference’s XML Representation to Component
Properties

The mapping from the XML Representation of the interface message reference element information item
(see 2.5.2 XML Representation of Interface Message Reference Component [p.32]) to the properties
of the Interface Message Reference [p.32] component (see 2.5.1 The Interface Message Reference
Component [p.31]) is as described in Table 2-5 [p.35] .

Define the message exchange pattern of the element information item to be the {message exchange pattern
[p.26] } of the parent Interface Operation [p.26] component.

Define the message direction of the element information item to be in if its local name is input and out if
its local name is output .

The messageLabel attribute information item of an interface message reference element information
item MUST be present if the message exchange pattern has more than one placeholder message with
{direction} equal to the message direction.

If the messageLabel attribute information item of an interface message reference element information
item is present then its actual value MUST match the {message label} of some placeholder message with
{direction} equal to the message direction.

If the messageLabel attribute information item of an interface message reference element information
item is absent then there MUST be a unique placeholder message with {direction} equal to the message
direction.

34

2.5 Interface Message Reference

Define the effective message label of an interface message reference element information item to be either
the actual value of the messageLabel attribute information item if it is present, or the {message label}
of the unique placeholder message with {direction} equal to the message direction if the attribute informa-
tion item is absent.

Table 2-5. Mapping from XML Representation to Interface Message Reference Component Properties

Property Value

{message label
[p.32] }

The effective message label.

{direction [p.32] } The message direction.

{message content
model [p.32] }

If the element attribute information item is present and its value is a QName,
then #element: otherwise the actual value of the element attribute information
item, if any; otherwise #other.

{element declara-
tion [p.32] }

If the element attribute information item is present and its value is a QName,
then the Element Declaration [p.14] component from the {element declarations
[p.14] } property of the Description [p.14] component resolved to by the value of
the element attribute information item (see 2.19 QName resolution [p.72]);
otherwise empty. It is an error for the element attribute information item to have
a value and for it to NOT resolve to an Element Declaration [p.14] from the
{element declarations [p.14] } property of the Description [p.14] .

{features [p.32] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties [p.32]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

{parent [p.32] }
The Interface Operation [p.26] component corresponding to the interface
element information item in [parent].

2.6 Interface Fault Reference

2.6.1 The Interface Fault Reference Component

An Interface Fault Reference [p.36] component associates a defined type, specified by an Interface Fault
[p.22] component, to a fault message exchanged in an operation.

A message exchange pattern defines a set of placeholder messages that participate in the pattern and
assigns them unique message labels within the pattern (e.g. ’In’, ’Out’). The purpose of an Interface Fault
Reference [p.36] component is to associate an actual message type (XML element declaration or some
other declaration (see 3.2 Using Other Schema Languages [p.78]) for message content, as specified by
an Interface Fault [p.22] component) with a fault message occurring in the pattern. In order to identify the
fault message it describes, the Interface Fault Reference [p.36] component uses the message label of the
message the fault is associated with as a key.

35

2.6 Interface Fault Reference

The companion specification [WSDL 2.0 Adjuncts [p.92]] defines several fault propagation rulesets that a
given message exchange pattern may use. For the ruleset fault-replaces-message, the message that the
fault relates to identifies the message in place of which the declared fault message will occur. Thus, the
fault message will travel in the same direction as the message it replaces in the pattern. For the ruleset
message-triggers-fault, the message that the fault relates to identifies the message after which the indi-
cated fault may occur, in the opposite direction of the referred to message. That is, the fault message will
travel in the opposite direction of the message it comes after in the message exchange pattern.

The properties of the Interface Fault Reference component are as follows:

{interface fault} REQUIRED. An Interface Fault [p.22] component in the {interface faults [p.18] }
property of the [parent] Interface Operation [p.26] component’s [parent] Interface [p.18] component,
or an Interface [p.18] component that it directly or indirectly extends. Identifying the Interface Fault
[p.22] component therefore indirectly defines the actual content or payload of the fault message.

{message label} REQUIRED. An xs:NCName. This property identifies the message this fault relates
to among those defined in the {message exchange pattern [p.26] } property of the Interface Operation
[p.26] component it is contained within. The value of this property MUST match the name of a place-
holder message defined by the message exchange pattern.

{direction} REQUIRED. A xs:token with one of the values in or out, indicating whether the fault is
coming to the service or going from the service, respectively. The direction MUST be consistent with
the direction implied by the fault propagation ruleset used in the message exchange pattern of the
operation. For example, if the ruleset fault-replaces-message is used, then a fault that refers to an
outgoing message would have a {direction [p.36] } property value of out. On the other hand, if the
ruleset message-triggers-fault is used, then a fault that refers to an outgoing message would have a
{direction [p.36] } property value of in as the fault travels in the opposite direction of the message.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

{parent} REQUIRED. The Interface Operation [p.26] component that contains this component in its
{interface fault references [p.26] } property.

For each Interface Fault Reference [p.36] component in the {interface fault references [p.26] } property of
an Interface Operation [p.26] component, the combination of its {interface fault [p.36] } and {message
label [p.36] } properties MUST be unique.

2.6.2 XML Representation of Interface Fault Reference

<description>
 <interface>
 <operation>
 < infault
 ref=" xs:QName"
 messageLabel=" xs:NCName"? >
 <documentation />*
 [<feature /> | <property />]*
 </ infault>*

36

2.6 Interface Fault Reference

 < outfault
 ref=" xs:QName"
 messageLabel=" xs:NCName"? >
 <documentation />*
 [<feature /> | <property />]*
 </ outfault>*
 </operation>
 </interface>
</description>

The XML representation for a Interface Fault Reference [p.36] component is an element information item
with the following Infoset properties:

A [local name] of infault or outfault

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item as described below in 2.6.2.1 ref attribute infor-
mation item with infault, or outfault [owner element] [p.37] .

An OPTIONAL messageLabel attribute information item as described below in 2.6.2.2
messageLabel attribute information item with infault, or outfault [owner element] [p.38] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.43]

Zero or more property element information items 2.8.2 XML Representation of Prop-
erty Component [p.47]

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl".

2.6.2.1 ref attribute information item with infault , or outfault [owner element]

The ref attribute information item refers to a fault component.

The ref attribute information item has the following Infoset properties:

37

2.6 Interface Fault Reference

A [local name] of ref

A [namespace name] which has no value

The type of the ref attribute information item is xs:QName.

2.6.2.2 messageLabel attribute information item with infault , or outfault [owner
element]

The messageLabel attribute information item identifies the message in the message exchange pattern
of the given operation element information item that is associated with this fault.

The messageLabel attribute information item has the following Infoset properties:

A [local name] of messageLabel

A [namespace name] which has no value

The type of the messageLabel attribute information item is xs:NCName.

The messageLabel attribute information item MUST be present in the XML representation of an Inter-
face Fault Reference [p.36] component with a given {direction [p.36] } if the {message exchange pattern
[p.26] } of the parent Interface Operation [p.26] component has more than one fault with that direction.
Recall that the fault propagation ruleset of the {message exchange pattern [p.26] } specifies the relation
between faults and messages. For example, the fault-replaces-message ruleset specifies that the faults have
the same direction as the messages, while the message-triggers-fault ruleset specifies that the faults have
the opposite direction from the messages.

2.6.3 Mapping Interface Fault Reference’s XML Representation to Component
Properties

The mapping from the XML Representation of the message reference element information item (see 2.6.2
XML Representation of Interface Fault Reference [p.36]) to the properties of the Interface Fault
Reference component (see 2.6.1 The Interface Fault Reference Component [p.35]) is as described in
Table 2-6 [p.39] .

Define the message exchange pattern of the element information item to be the {message exchange pattern
[p.26] } of the parent Interface Operation [p.26] component.

Define the fault direction of the element information item to be in if its local name is infault and out if
its local name is outfault .

Define the message direction of the element information item to be the {direction} of the placeholder
message associated with the fault as specifed by the fault propagation ruleset of the message exchange
pattern.

38

2.6 Interface Fault Reference

The messageLabel attribute information item of an interface fault reference element information item
MUST be present if the message exchange pattern has more than one placeholder message with {direc-
tion} equal to the message direction.

If the messageLabel attribute information item of an interface fault reference element information item
is present then its actual value MUST match the {message label} of some placeholder message with
{direction} equal to the message direction.

If the messageLabel attribute information item of an interface fault reference element information item
is absent then there MUST be a unique placeholder message with {direction} equal to the message direc-
tion.

Define the effective message label of an interface fault reference element information item to be either the
actual value of the messageLabel attribute information item if it is present, or the {message label} of
the unique placeholder message whose {direction} is equal to the message direction if the attribute infor-
mation item is absent.

Table 2-6. Mapping from XML Representation to Interface Fault Reference Component Properties

Property Value

{interface fault
[p.36] }

The Interface Fault [p.22] component from {interface faults [p.18] } property of the
parent Interface [p.18] component, or an Interface [p.18] component that it directly
or indirectly extends, with {name [p.22] } equal to the actual value of the ref
attribute information item.

{message label
[p.36] }

The effective message label.

{direction [p.36] } The fault direction.

{features [p.36] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties [p.36]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

{parent [p.36] }
The Interface Operation [p.26] component corresponding to the interface
element information item in [parent].

2.7 Feature

2.7.1 The Feature Component

A Feature [p.40] component describes an abstract piece of functionality typically associated with the
exchange of messages between communicating parties. Although WSDL 2.0 imposes no constraints on the
potential scope of such features, examples might include “reliability”, “security”, “correlation”, and
“routing”. The presence of a Feature [p.40] component in a WSDL 2.0 description indicates that the
service supports the feature and may require that a client that interacts with the service use that feature.

39

2.7 Feature

Each Feature [p.40] is identified by its IRI.

WSDL 2.0’s Feature [p.40] concept is derived from SOAP 1.2’s abstract feature concept ([SOAP 1.2 Part
1: Messaging Framework [p.93]]). Every SOAP 1.2 abstract feature is therefore also a WSDL 2.0 Feature
[p.40] . There is no need to define a separate WSDL 2.0 Feature [p.40] in order to use a particular SOAP
1.2 feature. The SOAP 1.2 feature can be used directly.

The properties of the Feature component are as follows:

{ref} REQUIRED. An xs:anyURI. This xs:anyURI MUST be an absolute IRI as defined by [IETF
RFC 3987 [p.92]]. This IRI SHOULD be dereferenceable to a document that directly or indirectly
defines the meaning and use of the Feature [p.40] that it identifies.

{required} REQUIRED. An xs:boolean. If the value of this property is true, then the client MUST
use the Feature [p.40] that is identified by the {ref [p.40] } IRI. Otherwise, the client MAY use the
Feature [p.40] that is identified by the {ref [p.40] } IRI. In either case, if the client does use the
Feature that is identified by the {ref [p.40] } IRI, then the client MUST obey all semantics implied by
the definition of that Feature [p.40] .

{parent} REQUIRED. The component that contains this component in its {features [p.40] } property.

The {ref [p.40] } property of a Feature [p.40] component MUST be unique within the {features [p.40] }
property of an Interface [p.18] , Interface Fault [p.22] , Interface Operation [p.26] , Interface Message
Reference [p.32] , Interface Fault Reference [p.36] , Binding [p.50] , Binding Fault [p.53] , Binding Oper-
ation [p.56] , Binding Message Reference [p.59] , Binding Fault Reference [p.62] , Service [p.65] , or
Endpoint [p.68] component.

2.7.1.1 Feature Composition Model

The set of features which are required or available for a given component consists of the combined set of
ALL feature declarations applicable to that component. A feature is applicable to a component if:

it is asserted directly within that component, or

it is asserted in a containing component, or

it is asserted in a component referred to by the current component.

Many of the component types in the component model contain a {features} property, which is a set of
Feature [p.40] components. We refer to these as the declared features of the component. Furthermore, the
{features [p.40] } property is itself a subset of Feature [p.40] components that are required or available for
the given component as determined by the Feature Composition Model. We refer to these as the in-scope
features of the component.

Following these rules, the set of features applicable at each component are as follows:

40

2.7 Feature

Interface [p.18] component: all features asserted within the Interface [p.18] component and those
with any extended Interface [p.18] components.

Interface Fault [p.22] component: all features asserted within the Interface Fault [p.22] component
and those within the parent Interface [p.18] component.

Interface Operation [p.26] component: all features asserted within the Interface Operation [p.26]
component and those within the parent Interface [p.18] component.

Interface Message Reference [p.32] component: all features asserted within the Interface Message
Reference [p.32] component, those within the parent Interface Operation [p.26] component and those
within its parent Interface [p.18] component.

Interface Fault Reference [p.36] component: all features asserted within the Interface Fault Reference
[p.36] component, those within the parent Interface Operation [p.26] component and those within its
parent Interface [p.18] component.

Binding [p.50] component: all features asserted within the Binding [p.50] component and those
within the Interface [p.18] component referred to by the Binding [p.50] component (if any).

Binding Fault [p.53] component: all features asserted within the Binding Fault [p.53] component,
those within the parent Binding [p.50] component, those within the corresponding Interface Fault
[p.22] component, and those within the Interface [p.18] component referred to by the Binding [p.50]
component.

Binding Operation [p.56] component: all features asserted within the Binding Operation [p.56]
component, those within the parent Binding [p.50] component, those within the corresponding Inter-
face Operation [p.26] component, and those within the Interface [p.18] component referred to by the
Binding [p.50] component.

Binding Message Reference [p.59] component: all features asserted within the Binding Message
Reference [p.59] component, those within the parent Binding [p.50] operation component, those
within its parent Binding [p.50] component, those within the corresponding Interface Message Refer-
ence [p.32] component, and those within the Interface [p.18] component referred to by the Binding
[p.50] component.

Binding Fault Reference [p.62] component: all features asserted within the Binding Fault Reference
[p.62] component, those within the parent Binding Operation [p.56] component, those within its
parent Binding [p.50] component, those within the corresponding Interface Fault Reference [p.36]
component, and those within the Interface [p.18] component referred to by the Binding [p.50] compo-
nent.

Service [p.65] component: all features asserted within the Service [p.65] component and those within
the Interface [p.18] implemented by the Service [p.65] component.

Endpoint [p.68] component: all features asserted within the Endpoint [p.68] component, whose
within the Binding [p.50] component implemented by the Endpoint [p.68] component, and those
within the parent Service [p.65] component.

41

2.7 Feature

If a given feature is asserted at multiple locations, then the value of that feature at a particular component
is determined by the conjunction of all the constraints implied by its asserted values. If a feature is not
required then it may or may not be engaged, but if a feature is required then it must be engaged. Therefore,
the conjunction of a required value and a non-required value is a required value. A composed feature is
required if and only if at least one of its asserted values is required. This rule may be summarized as "true
trumps".

2.7.1.1.1 Example of Feature Composition Model

In the following example, the depositFunds operation on the BankService has to be used with the
ISO9001 , the notarization and the secure-channel features; they are all in scope. The fact
that the notarization feature is declared both in the operation and in the binding has no effect.

<description targetNamespace="http://example.com/bank"
 xmlns=http://www.w3.org/2006/01/wsdl
 xmlns:ns1="http://example.com/bank">
 <interface name="ns1:Bank">
 <!-- All implementations of this interface must be secure -->
 <feature ref="http://example.com/secure-channel"
 required="true"/>
 <operation name="withdrawFunds">
 <!-- This operation must have ACID properties -->
 <feature ref="http://example.com/transaction"
 required="true"/>
 ...
 </operation>
 <operation name="depositFunds">
 <!-- This operation requires notarization -->
 <feature ref="http://example.com/notarization"
 required="true"/>
 ...
 </operation>
 </interface>

 <binding name="ns1:BankSOAPBinding">
 <!-- This particular binding requires ISO9001
 compliance to be verifiable -->
 <feature ref="http://example.com/ISO9001"
 required="true"/>
 <!-- This binding also requires notarization -->
 <feature ref="http://example.com/notarization"
 required="true"/>
 </binding>

 <service name="ns1:BankService"
 interface="tns:Bank">
 <endpoint binding="ns1:BankSOAPBinding">
 ...
 </endpoint>
 </service>
</description>

42

2.7 Feature

2.7.2 XML Representation of Feature Component

<feature
 ref=" xs:anyURI "
 required=" xs:boolean "? >
 <documentation />*
</ feature>

The XML representation for a Feature [p.40] component is an element information item with the following
Infoset properties:

A [local name] of feature

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item as described below in 2.7.2.1 ref attribute infor-
mation item with feature [owner element] [p.43] .

An OPTIONAL required attribute information item as described below in 2.7.2.2 required
attribute information item with feature [owner element] [p.43] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information items amongst its [children], in order as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more namespace-qualified element information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

2.7.2.1 ref attribute information item with feature [owner element]

The ref attribute information item specifies the IRI of the feature.

The ref attribute information item has the following Infoset properties:

A [local name] of ref

A [namespace name] which has no value

The type of the ref attribute information item is xs:anyURI .

2.7.2.2 required attribute information item with feature [owner element]

The required attribute information item specifies whether the use of the feature is mandatory or
optional.

43

2.7 Feature

The required attribute information item has the following Infoset properties:

A [local name] of required

A [namespace name] which has no value

The type of the required attribute information item is xs:boolean .

2.7.3 Mapping Feature’s XML Representation to Component Properties

The mapping from the XML Representation of the feature element information item (see 2.7.2 XML
Representation of Feature Component [p.43]) to the properties of the Feature [p.40] component (see
2.7.1 The Feature Component [p.39]) is as described in Table 2-7 [p.44] .

Table 2-7. Mapping from XML Representation to Feature Component Properties

Property Value

{ref [p.40] } The actual value of the ref attribute information item.

{required [p.40] }
The actual value of the required attribute information item, if present, otherwise
"false".

{parent [p.40] } The component corresponding to the element information item in [parent].

2.8 Property

2.8.1 The Property Component

A “property” in the Features and Properties architecture represents a named runtime value which affects
the behavior of some aspect of a Web service interaction, much like an environment variable. For
example, a reliable messaging SOAP module may specify a property to control the number of retries in the
case of network failure. WSDL 2.0 documents may specify the value constraints for these properties by
referring to a Schema type, or by specifying a particular value. Properties, and hence property values, can
be shared amongst features/bindings/modules, and are named with IRIs precisely to allow this type of
sharing.

The properties of the Property component are as follows:

{ref} REQUIRED. An xs:anyURI. This xs:anyURI MUST be an absolute IRI as defined by [IETF
RFC 3987 [p.92]]. This IRI SHOULD be dereferenceable to a document that directly or indirectly
defines the meaning and use of the Property that it identifies.

{value constraint} OPTIONAL. A reference to a Type Definition [p.14] component in the {type defi-
nitions [p.14] } property of the Description [p.14] component constraining the value of the Property
[p.44] , or the token #value if the {value [p.45] } property is not empty.

44

2.8 Property

{value} OPTIONAL. The value of the Property, an ordered list of child information items, as speci-
fied by the [children] property of element information items in [XML Information Set [p.92]].

{parent} REQUIRED. The component that contains this component in its {properties [p.45] } prop-
erty.

The {ref [p.44] } property of a Property [p.44] component MUST be unique within the {properties [p.45]
} property of an Interface [p.18] , Interface Fault [p.22] , Interface Operation [p.26] , Interface Message
Reference [p.32] , Interface Fault Reference [p.36] , Binding [p.50] , Binding Fault [p.53] , Binding Oper-
ation [p.56] , Binding Message Reference [p.59] , Binding Fault Reference [p.62] , Service [p.65] , or
Endpoint [p.68] component.

If a type system not based upon the XML Infoset is in use (as considered in 3.2 Using Other Schema
Languages [p.78]) then additional properties would need to be added to the Property [p.44] component
(along with extensibility attributes to its XML representation) to allow using such a type system to
describe values and constraints for properties.

2.8.1.1 Property Composition Model

At runtime, the behavior of features, (SOAP) modules and bindings may be affected by the values of
in-scope properties. Properties combine into a virtual “execution context” which maps property names
(IRIs) to constraints. Each property IRI MAY therefore be associated with AT MOST one property
constraint for a given interaction.

The set of properties which are required or available for a given component consists of the combined set
of ALL property declarations applicable to that component. A property is applicable to a component if:

it is asserted directly within that component, or

it is asserted in a containing component, or

it is asserted in a component referred to by the current component.

Many of the component types in the component model contain a {properties} property, which is a set of
Property [p.44] components. We refer to these as the declared properties of the component. Furthermore,
the {properties [p.45] } property is itself a subset of Property [p.44] components that are required or avail-
able for the given component as determined by the Property Composition Model. We refer to these as the
in-scope properties of the component.

Following these rules, the set of properties applicable at each component are as follows:

Interface [p.18] component: all properties asserted within the Interface [p.18] component and those
with any extended Interface [p.18] components.

Interface Fault [p.22] component: all properties asserted within the Interface Fault [p.22] component
and those within the parent Interface [p.18] component.

45

2.8 Property

Interface Operation [p.26] component: all properties asserted within the Interface Operation [p.26]
component and those within the parent Interface [p.18] component.

Interface Message Reference [p.32] component: all properties asserted within the Interface Message
Reference [p.32] component, those within the parent Interface Operation [p.26] component and those
within its parent Interface [p.18] component.

Binding [p.50] component: all properties asserted within the Binding [p.50] component and those
within the Interface [p.18] component referred to by the Binding [p.50] component (if any).

Binding Fault [p.53] component: all properties asserted within the Binding Fault [p.53] component,
those within the parent Binding [p.50] component, those within the corresponding Interface Fault
[p.22] component, and those within the Interface [p.18] component referred to by the Binding [p.50]
component.

Binding Operation [p.56] component: all properties asserted within the Binding Operation [p.56]
component, those within the parent Binding [p.50] component, those within the corresponding Inter-
face Operation [p.26] component, and those within the Interface [p.18] component referred to by the
Binding [p.50] component.

Binding Message Reference [p.59] component: all properties asserted within the Binding Message
Reference [p.59] component, those within the parent Binding Operation [p.56] component, those
within its parent Binding [p.50] component, those within the corresponding Interface Message Refer-
ence [p.32] component, and those within the Interface [p.18] component referred to by the Binding
[p.50] component.

Binding Fault Reference [p.62] component: all properties asserted within the Binding Fault Reference
[p.62] component, those within the parent Binding Operation [p.56] component, those within its
parent Binding [p.50] component, those within the corresponding Interface Fault Reference [p.36]
component, and those within the Interface [p.18] component referred to by the Binding [p.50] compo-
nent.

Service [p.65] component: all properties asserted within the Service [p.65] component and those
within the Interface [p.18] implemented by the Service [p.65] component.

Endpoint [p.68] component: all properties asserted within the Endpoint [p.68] component, whose
within the Binding [p.50] component implemented by the Endpoint [p.68] component, and those
within the parent Service [p.65] component.

Note that, in the text above, “property constraint” (or, simply, “constraint”) is used to mean EITHER a
constraint inside a Property [p.44] component OR a value , since value may be considered a
special case of constraint .

If a given Property is asserted at multiple locations, then the value of that Property at a particular compo-
nent is determined by the conjunction of all the constraints of its in-scope Property [p.44] components. A
Property constraint asserts that, for a given interaction, the value of a Property is either a specified value or
belongs to a specified set of values. A specified value may be regarded as a singleton set, so in both cases
a Property constraint corresponds to an assertion that the Property value belongs to some set. The conjunc-

46

2.8 Property

tion of all the constraints associated with the in-scope properties is an assertion that the property value
belongs to each of the associated sets, or equivalently, that the value belongs to the intersection of all the
associated sets. If the intersection of the associated sets is empty, then the property constraints are mutu-
ally incompatible, and the composition is invalid. Therefore, the intersection of the associated sets
SHOULD NOT be empty.

Note:

The reason that we phrase the requirement for a non-empty intersection as SHOULD rather than MUST, is
that in general, it may be computationally difficult to determine by inspection of the type definitions that
the intersection of two or more value sets is empty. Therefore, it is not a strict validity requirement that the
intersection of the value sets be non-empty. An empty intersection will always result in failure of the
service at run-time.

However, it is in general feasible to test specified values for either equality or membership in value sets.
All specified values MUST be equal and belong to each specified value set.

2.8.2 XML Representation of Property Component

<property
 ref=" xs:anyURI " >
 <documentation />*
 [<value /> | <constraint />]?
</ property>

The XML representation for a Property [p.44] component is an element information item with the follow-
ing Infoset properties:

A [local name] of property

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item as described below in 2.8.2.1 ref attribute infor-
mation item with property [owner element] [p.48] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information items amongst its [children], in order as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. One OPTIONAL element information item from among the following:

A value element information item as described in 2.8.2.2 value element information
item with property [parent] [p.48]

47

2.8 Property

A constraint element information item as described in 2.8.2.3 constraint element
information item with property [parent] [p.48]

3. Zero or more namespace-qualified element information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

2.8.2.1 ref attribute information item with property [owner element]

The ref attribute information item specifies the IRI of the property. It has the following Infoset proper-
ties:

A [local name] of ref

A [namespace name] which has no value

The type of the ref attribute information item is xs:anyURI .

2.8.2.2 value element information item with property [parent]

<property>
 < value>
 xs:anyType
 </ value>
</property>

The value element information item specifies the value of the property. It has the following Infoset prop-
erties:

A [local name] of value

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

The type of the value element information item is xs:anyType .

2.8.2.3 constraint element information item with property [parent]

<property>
 < constraint>
 xs:QName
 </ constraint>
</property>

The constraint element information item specifies a constraint on the value of the property. It has the
following Infoset properties:

A [local name] of constraint

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

48

2.8 Property

The type of the constraint attribute information item is xs:QName .

2.8.3 Mapping Property’s XML Representation to Component Properties

The mapping from the XML Representation of the property element information item (see 2.8.2 XML
Representation of Property Component [p.47]) to the properties of the Property [p.44] component (see
2.8.1 The Property Component [p.44]) is as described in Table 2-8 [p.49] .

Table 2-8. Mapping from XML Representation to Property Component Properties

Property Value

{ref [p.44] } The actual value of the ref attribute information item.

{value constraint
[p.44] }

If the constraint element information item is present, the Type Definition
[p.14] component from the {type definitions [p.14] } property of the Description
[p.14] component resolved to by the value of the constraint element informa-
tion item (see 2.19 QName resolution [p.72]); otherwise, if the value element
information item is present, the token #value; otherwise empty.

{value [p.45] }
The value of the [children] property of the value element information item, if that
element is present, otherwise empty.

{parent [p.45] } The component corresponding to the element information item in [parent].

2.9 Binding

2.9.1 The Binding Component

A Binding [p.50] component describes a concrete message format and transmission protocol which may
be used to define an endpoint (see 2.15 Endpoint [p.68]). That is, a Binding [p.50] component defines the
implementation details necessary to access the service.

Binding [p.50] components can be used to describe such information in a reusable manner for any inter-
face or specifically for a given interface. Furthermore, binding information MAY be specified on a
per-operation basis (see 2.11.1 The Binding Operation Component [p.56]) within an interface in addi-
tion to across all operations of an interface.

If a Binding [p.50] component specifies any operation-specific binding details (by including Binding
Operation [p.56] components) or any fault binding details (by including Binding Fault [p.53] components)
then it MUST specify an interface the Binding [p.50] component applies to, so as to indicate which inter-
face the operations come from.

Conversely, a Binding [p.50] component which omits any operation-specific binding details and any fault
binding details MAY omit specifying an interface. Binding [p.50] components that do not specify an inter-
face MAY be used to specify operation-independent binding details for Service [p.65] components with
different interfaces. That is, such Binding [p.50] components are reusable across one or more interfaces.

49

2.9 Binding

No concrete binding details are given in this specification. The companion specification, WSDL (Version
2.0): Adjuncts [WSDL 2.0 Adjuncts [p.92]] defines such bindings for SOAP 1.2 [SOAP 1.2 Part 1:
Messaging Framework [p.93]] and HTTP [IETF RFC 2616 [p.93]]. Other specifications MAY define
additional binding details. Such specifications are expected to annotate the Binding [p.50] component (and
its sub-components) with additional properties and specify the mapping from the XML representation to
those properties.

A Binding [p.50] component that defines bindings for an Interface [p.18] component MUST define bind-
ings for all the operations of that Interface [p.18] component. The bindings may occur via defaulting rules
which allow one to specify default bindings for all operations (see, for example [WSDL 2.0 Adjuncts
[p.92]]) or by directly listing each Interface Operation [p.26] component of the Interface [p.18] compo-
nent and defining bindings for them. Thus, it is an error for a Binding [p.50] component to not define
bindings for all the Interface Operation [p.26] components of the Interface [p.18] component for which the
Binding [p.50] component purportedly defines bindings for.

Bindings are named constructs and can be referred to by QName (see 2.19 QName resolution [p.72]).
For instance, Endpoint [p.68] components refer to bindings in this way.

The properties of the Binding component are as follows:

{name} REQUIRED. An xs:QName.

{interface} OPTIONAL. An Interface [p.18] component indicating the interface for which binding
information is being specified.

{type} REQUIRED. An xs:anyURI. This xs:anyURI MUST be an absolute IRI as defined by [IETF
RFC 3987 [p.92]]. The value of this IRI indicates what kind of concrete binding details are
contained within this Binding [p.50] component. Specifications (such as [WSDL 2.0 Adjuncts [p.92]]
) that define such concrete binding details MUST specify appropriate values for this property. The
value of this property MAY be the namespace name of the extension elements or attributes which
define those concrete binding details.

{binding faults} OPTIONAL. A set of Binding Fault [p.53] components.

{binding operations} OPTIONAL. A set of Binding Operation [p.56] components.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

For each Binding [p.50] component in the {bindings [p.14] } property of a Description [p.14] component,
the {name [p.50] } property MUST be unique.

2.9.2 XML Representation of Binding Component

<description>
 < binding
 name=" xs:NCName"
 interface=" xs:QName"?
 type=" xs:anyURI " >

50

2.9 Binding

 <documentation />*
 [<fault /> | <operation /> | <feature /> | <property />]*
 </ binding>
</description>

The XML representation for a Binding [p.50] component is an element information item with the follow-
ing Infoset properties:

A [local name] of binding

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

Two or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.9.2.1 name attribute
information item with binding [owner element] [p.52] .

An OPTIONAL interface attribute information item as described below in 2.9.2.2 interface
attribute information item with binding [owner element] [p.52] .

An REQUIRED type attribute information item as described below in 2.9.2.3 type attribute
information item with binding [owner element] [p.52] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information items amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more fault element information items (see 2.10.2 XML Representation of
Binding Fault Component [p.54]).

Zero or more operation element information items (see 2.11.2 XML Representation of
Binding Operation Component [p.57]).

Zero or more feature element information items (see 2.7.2 XML Representation of
Feature Component [p.43]).

Zero or more property element information items (see 2.8.2 XML Representation of
Property Component [p.47]).

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl". Such element information items are considered to
be binding extension elements(see 2.9.2.4 Binding extension elements [p.52]).

51

2.9 Binding

2.9.2.1 name attribute information item with binding [owner element]

The name attribute information item together with the targetNamespace attribute information item
of the description element information item forms the QName of the binding.

The name attribute information item has the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.9.2.2 interface attribute information item with binding [owner element]

The interface attribute information item refers, by QName, to an Interface [p.18] component.

The interface attribute information item has the following Infoset properties:

A [local name] of interface

A [namespace name] which has no value

The type of the interface attribute information item is xs:QName.

2.9.2.3 type attribute information item with binding [owner element]

The type attribute information item identifies the kind of binding details contained in the Binding [p.50]
component.

The type attribute information item has the following Infoset properties:

A [local name] of type

A [namespace name] which has no value

The type of the type attribute information item is xs:anyURI.

2.9.2.4 Binding extension elements

Binding extension elements are used to provide information specific to a particular binding. The semantics
of such element information items are defined by the specification for those element information items.
Such specifications are expected to annotate the Binding [p.50] component with additional properties and
specify the mapping from the XML representation to those properties.

52

2.9 Binding

2.9.3 Mapping Binding’s XML Representation to Component Properties

The mapping from the XML Representation of the binding element information item (see 2.9.2 XML
Representation of Binding Component [p.50]) to the properties of the Binding [p.50] component (see
2.9.1 The Binding Component [p.49]) is as described in Table 2-9 [p.53] .

Table 2-9. Mapping from XML Representation to Binding Component Properties

Property Value

{name [p.50] }

The QName whose local name is the actual value of the name attribute informa-
tion item and whose namespace name is the actual value of the targetNames-
pace attribute information item of the [parent] description element informa-
tion item.

{interface [p.50] }
The Interface [p.18] component resolved to by the actual value of the interface
attribute information item (see 2.19 QName resolution [p.72]), if any.

{type [p.50] } The actual value of the type attribute information item.

{binding faults
[p.50] }

The set of Binding Fault [p.53] components corresponding to the fault element
information items in [children], if any.

{binding opera-
tions [p.50] }

The set of Binding Operation [p.56] components corresponding to the opera-
tion element information items in [children], if any.

{features [p.50] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties [p.50]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

2.10 Binding Fault

2.10.1 The Binding Fault Component

A Binding Fault [p.53] component describes a concrete binding of a particular fault within an interface to
a particular concrete message format. A particular fault of an interface is uniquely identified by its {name
[p.22] } property.

Note that the fault does not occur by itself - it occurs as part of a message exchange as defined by an Inter-
face Operation [p.26] component (and its binding counterpart the Binding Operation [p.56] component).
Thus, the fault binding information specified in a Binding Fault [p.53] component describes how faults
that occur within a message exchange of an operation will be formatted and carried in the transport.

The properties of the Binding Fault component are as follows:

53

2.10 Binding Fault

{interface fault} REQUIRED. An Interface Fault [p.22] component in the {interface faults [p.18] }
property of the Interface [p.18] component identified by the {interface [p.50] } property of the parent
Binding [p.50] component, or an Interface [p.18] component that that Interface [p.18] component
directly or indirectly extends. This is the Interface Fault [p.22] component for which binding infor-
mation is being specified.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

{parent} REQUIRED. The Binding [p.50] component that contains this component in its {binding
faults [p.50] } property.

For each Binding Fault [p.53] component in the {binding faults [p.50] } property of a Binding [p.50]
component, the {interface fault [p.54] } property MUST be unique. That is, one cannot define multiple
bindings for the same fault within a given Binding [p.50] component.

2.10.2 XML Representation of Binding Fault Component

<description>
 <binding>
 < fault
 ref=" xs:QName" >
 <documentation />*
 [<feature /> | <property />]*
 </ fault>
 </binding>
</description>

The XML representation for a Binding Fault [p.53] component is an element information item with the
following Infoset properties:

A [local name] of fault

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item as described below in 2.10.2.1 ref attribute
information item with fault [owner element] [p.55] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

54

2.10 Binding Fault

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.43]

Zero or more property element information items 2.8.2 XML Representation of Prop-
erty Component [p.47]

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl". Such element information items are considered to
be binding fault extension elements as described below (see 2.10.2.2 Binding Fault exten-
sion elements [p.55]).

2.10.2.1 ref attribute information item with fault [owner element]

The ref attribute information item has the following Infoset properties:

A [local name] of ref

A [namespace name] which has no value

The type of the ref attribute information item is xs:QName.

2.10.2.2 Binding Fault extension elements

Binding Fault extension elements are used to provide information specific to a particular fault in a binding.
The semantics of such element information items are defined by the specification for those element infor-
mation items. Such specifications are expected to annotate the Binding Fault [p.53] component with addi-
tional properties and specify the mapping from the XML representation to those properties.

2.10.3 Mapping Binding Fault’s XML Representation to Component Properties

The mapping from the XML Representation of the fault element information item (see 2.10.2 XML
Representation of Binding Fault Component [p.54]) to the properties of the Binding Fault [p.53]
component (see 2.10.1 The Binding Fault Component [p.53]) is as described in Table 2-10 [p.55] .

55

2.10 Binding Fault

Table 2-10. Mapping from XML Representation to Binding Fault Component Properties

Property Value

{interface fault
[p.54] }

The Interface Fault [p.22] Component corresponding to the actual value of the ref
attribute information item.

{features [p.54] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties [p.54]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

{parent [p.54] }
The Binding [p.50] component corresponding to the binding element informa-
tion item in [parent].

2.11 Binding Operation

2.11.1 The Binding Operation Component

The Binding Operation [p.56] component describes the concrete message format(s) and protocol interac-
tion(s) associated with a particular interface operation for a given endpoint. A particular operation of an
interface is uniquely identified by its {name [p.26] } property.

The properties of the Binding Operation component are as follows:

{interface operation} REQUIRED. An Interface Operation component in the {interface operations
[p.18] } property of the Interface [p.18] component identified by the {interface [p.50] } property of
the [parent] Binding [p.50] component, or an Interface component that that Interface [p.18] compo-
nent directly or indirectly extends. This is the Interface Operation [p.26] component for which
binding information is being specified.

{binding message references} OPTIONAL. A set of Binding Message Reference [p.59] components.

{binding fault references} OPTIONAL. A set of Binding Fault Reference [p.62] components.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

{parent} REQUIRED. The Binding [p.50] component that contains this component in its {binding
operations [p.50] } property.

For each Binding Operation [p.56] component in the {binding operations [p.50] } property of a Binding
[p.50] component, the {interface operation [p.56] } property MUST be unique. That is, one cannot define
multiple bindings for the same operation within a given Binding [p.50] component.

56

2.11 Binding Operation

2.11.2 XML Representation of Binding Operation Component

<description>
 <binding>
 < operation
 ref=" xs:QName" >
 <documentation />*
 [<input /> | <output /> | <infault /> | <outfault /> | <feature /> | <property />]*
 </ operation>
 </binding>
</description>

The XML representation for a Binding Operation [p.56] component is an element information item with
the following Infoset properties:

A [local name] of operation

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item as described below in 2.11.2.1 ref attribute
information item with operation [owner element] [p.58] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information items amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more input element information items (see 2.12 Binding Message Reference
[p.59])

Zero or more output element information items (see 2.12 Binding Message Reference
[p.59])

Zero or more infault element information items (see 2.13 Binding Fault Reference
[p.62])

Zero or more outfault element information items (see 2.13 Binding Fault Reference
[p.62])

Zero or more feature element information items (see 2.7.2 XML Representation of
Feature Component [p.43])

Zero or more property element information items (see 2.7.2 XML Representation of
Feature Component [p.43])

57

2.11 Binding Operation

Zero or more namespace-qualified element information item whose [namespace name] is
NOT " http://www.w3.org/2006/01/wsdl ". Such element information items are considered
to be binding operation extension elements as described below (see 2.11.2.2 Binding
Operation extension elements [p.58]).

2.11.2.1 ref attribute information item with operation [owner element]

The ref attribute information item has the following Infoset properties:

A [local name] of ref

A [namespace name] which has no value

The type of the ref attribute information item is xs:QName.

2.11.2.2 Binding Operation extension elements

Binding Operation extension elements are used to provide information specific to a particular operation in
a binding. The semantics of such element information items are defined by the specification for those
element information items. Such specifications are expected to annotate the Binding Operation [p.56]
component with additional properties and specify the mapping from the XML representation to those
properties.

2.11.3 Mapping Binding Operation’s XML Representation to Component Properties

The mapping from the XML Representation of the operation element information item (see 2.11.2
XML Representation of Binding Operation Component [p.57]) to the properties of the Binding Opera-
tion [p.56] component is as described in Table 2-11 [p.58] .

Table 2-11. Mapping from XML Representation to Binding Operation Component Properties

Property Value

{interface opera-
tion [p.56] }

The Interface Operation [p.26] component corresponding to the actual value of the
ref attribute information item.

{binding message
references [p.56] }

The set of Binding Message Reference [p.59] components corresponding to the
input and output element information items in [children], if any.

{binding fault
references [p.56] }

The set of Binding Fault Reference [p.62] components corresponding to the
infault and outfault element information items in [children], if any.

{features [p.56] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties [p.56]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

{parent [p.56] }
The Binding [p.50] component corresponding to the binding element informa-
tion item in [parent].

58

2.11 Binding Operation

2.12 Binding Message Reference

2.12.1 The Binding Message Reference Component

A Binding Message Reference [p.59] component describes a concrete binding of a particular message
participating in an operation to a particular concrete message format.

The properties of the Binding Message Reference component are as follows:

{interface message reference} REQUIRED. An Interface Message Reference [p.32] component
among those in the {interface message references [p.26] } property of the Interface Operation [p.26]
component being bound by the containing Binding Operation [p.56] component.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

{parent} REQUIRED. The Binding Operation [p.56] component that contains this component in its
{binding message references [p.56] } property.

For each Binding Message Reference [p.59] component in the {binding message references [p.56] } prop-
erty of a Binding Operation [p.56] component, the {interface message reference [p.59] } property MUST
be unique. That is, the same message cannot be bound twice within the same operation.

2.12.2 XML Representation of Binding Message Reference Component

<description>
 <binding>
 <operation>
 < input
 messageLabel=" xs:NCName"? >
 <documentation />*
 [<feature /> | <property />]*
 </ input>
 < output
 messageLabel=" xs:NCName"? >
 <documentation />*
 [<feature /> | <property />]*
 </ output>
 </operation>
 </binding>
</description>

The XML representation for a Binding Message Reference [p.59] component is an element information
item with the following Infoset properties:

A [local name] of input or output .

A [namespace name] of "http://www.w3.org/2006/01/wsdl".

59

2.12 Binding Message Reference

Zero or more attribute information items amongst its [attributes] as follows:

An OPTIONAL messageLabel attribute information item as described below in 2.12.2.1
messageLabel attribute information item with input or output [owner element] [p.60] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.43]

Zero or more property element information items 2.8.2 XML Representation of Prop-
erty Component [p.47]

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl". Such element information items are considered to
be binding message reference extension elements as described below (see 2.12.2.2 Binding
Message Reference extension elements [p.60]).

2.12.2.1 messageLabel attribute information item with input or output [owner
element]

The messageLabel attribute information item has the following Infoset properties:

A [local name] of messageLabel .

A [namespace name] which has no value.

The type of the messageLabel attribute information item is xs:NCName.

2.12.2.2 Binding Message Reference extension elements

Binding Message Reference extension elements are used to provide information specific to a particular
message in an operation. The semantics of such element information items are defined by the specification
for those element information items. Such specifications are expected to annotate the Binding Message
Reference [p.59] component with additional properties and specify the mapping from the XML represen-
tation to those properties..

60

2.12 Binding Message Reference

2.12.3 Mapping Binding Message Reference’s XML Representation to Component
Properties

The mapping from the XML Representation of the binding element information item (see 2.12.2 XML
Representation of Binding Message Reference Component [p.59]) to the properties of the Binding
Message Reference [p.59] component is as described in Table 2-12 [p.61] .

Define the message exchange pattern of the element information item to be the {message exchange pattern
[p.26] } of the Interface Operation [p.26] component being bound.

Define the message direction of the element information item to be in if its local name is input and out if
its local name is output .

The messageLabel attribute information item of a binding message reference element information item
MUST be present if the message exchange pattern has more than one placeholder message with {direc-
tion} equal to the message direction.

If the messageLabel attribute information item of a binding message reference element information
item is present then its actual value MUST match the {message label} of some placeholder message with
{direction} equal to the message direction.

If the messageLabel attribute information item of a binding message reference element information
item is absent then there MUST be a unique placeholder message with {direction} equal to the message
direction.

Define the effective message label of a binding message reference element information item to be either
the actual value of the messageLabel attribute information item if it is present, or the {message label}
of the unique placeholder message with {direction} equal to the message direction if the attribute informa-
tion item is absent.

Table 2-12. Mapping from XML Representation to Binding Message Reference Component Properties

Property Value

{interface message
reference [p.59] }

The Interface Message Reference [p.32] component in the {interface message
references [p.26] } of the Interface Operation [p.26] component being bound with
{message label [p.32] } equal to the effective message label.

{features}
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties}
The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

{parent}
The Binding Operation [p.56] component corresponding to the operation
element information item in [parent].

61

2.12 Binding Message Reference

2.13 Binding Fault Reference

2.13.1 The Binding Fault Reference Component

A Binding Fault Reference [p.62] component describes a concrete binding of a particular fault participat-
ing in an operation to a particular concrete message format.

The properties of the Binding Fault Reference component are as follows:

{interface fault reference} REQUIRED. An Interface Fault Reference [p.36] component among those
in the {interface fault references [p.26] } property of the Interface Operation [p.26] component being
bound by the parent Binding Operation [p.56] component.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

{parent} REQUIRED. The Binding Operation [p.56] component that contains this component in its
{binding fault references [p.56] } property.

For each Binding Fault Reference [p.62] component in the {binding fault references [p.56] } property of a
Binding Operation [p.56] component, the {interface fault reference [p.62] } property MUST be unique.
That is, the same fault cannot be bound twice within the same operation.

2.13.2 XML Representation of Binding Fault Reference Component

<description>
 <binding>
 <operation>
 < infault
 ref=" xs:QName"
 messageLabel=" xs:NCName"?>
 <documentation />*
 [<feature /> | <property />]*
 </ infault>
 < outfault
 ref=" xs:QName"
 messageLabel=" xs:NCName"?>
 <documentation />*
 [<feature /> | <property />]*
 </ outfault>
 </operation>
 </binding>
</description>

The XML representation for a Binding Fault Reference [p.62] component is an element information item
with the following Infoset properties:

A [local name] of infault or outfault .

62

2.13 Binding Fault Reference

A [namespace name] of "http://www.w3.org/2006/01/wsdl".

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item as described below in 2.13.2.1 ref attribute
information item with infault or outfault [owner element] [p.63] .

An OPTIONAL messageLabel attribute information item as described below in 2.13.2.2
messageLabel attribute information item with infault or outfault [owner element] [p.63] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.43]

Zero or more property element information items 2.8.2 XML Representation of Prop-
erty Component [p.47]

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl". Such element information items are considered to
be binding fault reference extension elements as described below (see 2.13.2.3 Binding
Fault Reference extension elements [p.64]).

2.13.2.1 ref attribute information item with infault or outfault [owner element]

The ref attribute information item has the following Infoset properties:

A [local name] of ref .

A [namespace name] which has no value.

The type of the ref attribute information item is xs:QName.

2.13.2.2 messageLabel attribute information item with infault or outfault [owner
element]

The messageLabel attribute information item has the following Infoset properties:

A [local name] of messageLabel .

63

2.13 Binding Fault Reference

A [namespace name] which has no value.

The type of the messageLabel attribute information item is xs:NCName.

2.13.2.3 Binding Fault Reference extension elements

Binding Fault Reference extension elements are used to provide information specific to a particular fault
in an operation. The semantics of such element information items are defined by the specification for those
element information items. Such specifications are expected to annotate the Binding Fault Reference
[p.62] component with additional properties and specify the mapping from the XML representation to
those properties..

2.13.3 Mapping Binding Fault Reference’s XML Representation to Component
Properties

The mapping from the XML Representation of the binding element information item (see 2.13.2 XML
Representation of Binding Fault Reference Component [p.62]) to the properties of the Binding Fault
Reference [p.62] component is as described in Table 2-13 [p.65] .

Define the message exchange pattern of the element information item to be the {message exchange pattern
[p.26] } of the Interface Operation [p.26] component being bound.

Define the fault direction of the element information item to be in if its local name is infault and out if
its local name is outfault .

Define the message direction of the element information item to be the {direction} of the placeholder
message associated with the fault as specifed by the fault propagation ruleset of the message exchange
pattern.

The messageLabel attribute information item of a binding fault reference element information item
MUST be present if the message exchange pattern has more than one placeholder message with {direc-
tion} equal to the message direction.

If the messageLabel attribute information item of a binding fault reference element information item is
present then its actual value MUST match the {message label} of some placeholder message with {direc-
tion} equal to the message direction.

If the messageLabel attribute information item of a binding fault reference element information item is
absent then there MUST be a unique placeholder message with {direction} equal to the message direction.

Define the effective message label of a binding fault reference element information item to be either the
actual value of the messageLabel attribute information item if it is present, or the {message label} of
the unique placeholder message with {direction} equal to the message direction if the attribute informa-
tion item is absent.

There MUST be an Interface Fault Reference [p.36] component in the {interface fault references [p.26] }
of the Interface Operation [p.26] being bound with {message label [p.36] } equal to the effective message
label and with {interface fault [p.36] } equal to an Interface Fault [p.22] component with {name [p.22] }

64

2.13 Binding Fault Reference

equal to the actual value of the ref attribute information item.

Table 2-13. Mapping from XML Representation to Binding Fault Reference Component Properties

Property Value

{interface fault
reference [p.62] }

The Interface Fault Reference [p.36] component in the {interface fault references
[p.26] } of the Interface Operation [p.26] being bound with {message label [p.36] }
equal to the effective message label and with {interface fault [p.36] } equal to an
Interface Fault [p.22] component with {name [p.22] } equal to the actual value of
the ref attribute information item.

{features}
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties}
The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

{parent}
The Binding Operation [p.56] component corresponding to the operation
element information item in [parent].

2.14 Service

2.14.1 The Service Component

A Service [p.65] component describes a set of endpoints (see 2.15 Endpoint [p.68]) at which a particular
deployed implementation of the service is provided. The endpoints thus are in effect alternate places at
which the service is provided.

Services are named constructs and can be referred to by QName (see 2.19 QName resolution [p.72]).

The properties of the Service component are as follows:

{name} REQUIRED. An xs:QName.

{interface} REQUIRED. An Interface [p.18] component.

{endpoints} REQUIRED. A non-empty set of Endpoint [p.68] components.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

For each Service [p.65] component in the {services [p.14] } property of a Description component, the
{name [p.65] } property MUST be unique.

65

2.14 Service

2.14.2 XML Representation of Service Component

<description>
 < service
 name=" xs:NCName"
 interface=" xs:QName" >
 <documentation />*
 <endpoint />+
 [<feature /> | <property />]*
 </ service>
</description>

The XML representation for a Service [p.65] component is an element information item with the following
Infoset properties:

A [local name] of service

A [namespace name] of "http://www.w3.org/2006/01/wsdl"

Two or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.14.2.1 name attribute
information item with service [owner element] [p.67] .

A REQUIRED interface attribute information item as described below in 2.14.2.2 interface
attribute information item with service [owner element] [p.67] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

One or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. One or more element information items from among the following, in any order:

One or more endpoint element information items (see 2.15.2 XML Representation of
Endpoint Component [p.69]

Zero or more feature and/or property element information items (see 2.7.2 XML
Representation of Feature Component [p.43] and 2.8.2 XML Representation of Prop-
erty Component [p.47] , respectively).

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl".

66

2.14 Service

2.14.2.1 name attribute information item with service [owner element]

The name attribute information item together with the targetNamespace attribute information item
of the description element information item forms the QName of the service.

The name attribute information item has the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

The type of the name attribute information item is xs:NCName.

2.14.2.2 interface attribute information item with service [owner element]

The interface attribute information item identifies the interface that the service is an instance of.

The interface attribute information item has the following Infoset properties:

A [local name] of interface

A [namespace name] which has no value

The type of the interface attribute information item is xs:QName..

2.14.3 Mapping Service’s XML Representation to Component Properties

The mapping from the XML Representation of the service element information item (see 2.14.2 XML
Representation of Service Component [p.66]) to the properties of the Service [p.65] component is as
described in Table 2-14 [p.67] .

Table 2-14. Mapping from XML Representation to Service Component Properties

Property Value

{name [p.65] }

The QName whose local name is the actual value of the name attribute informa-
tion item and whose namespace name is the actual value of the targetNames-
pace attribute information item of the [parent] description element informa-
tion item.

{interface [p.65] }
The Interface [p.18] component resolved to by the actual value of the interface
attribute information item (see 2.19 QName resolution [p.72]).

{endpoints [p.65] }
The Endpoint [p.68] components corresponding to the endpoint element infor-
mation items in [children].

{features [p.65] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

67

2.14 Service

{properties [p.65]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

2.15 Endpoint

2.15.1 The Endpoint Component

An Endpoint [p.68] component defines the particulars of a specific endpoint at which a given service is
available.

Endpoint [p.68] components are local to a given Service [p.65] component; they cannot be referred to by
QName (see A.2 Fragment Identifiers [p.96]).

The {address [p.68] } property is optional to allow for means other than IRIs to be used, e.g. a
WS-Addressing Endpoint Reference [WSA 1.0 Core [p.93]]. It is also possible that in certain scenarios an
address will not be required, in which case this property may not be present.

The properties of the Endpoint component are as follows:

{name} REQUIRED. An xs:NCName.

{binding} REQUIRED. A Binding [p.50] component.

{address} OPTIONAL. An xs:anyURI. This xs:anyURI MUST be an absolute IRI as defined by
[IETF RFC 3987 [p.92]]. If present, the value of this attribute represents the network address at
which the service indicated by the parent Service [p.65] component’s {interface [p.65] } property is
offered via the binding referred to by the {binding [p.68] } property.

{features} OPTIONAL. A set of Feature [p.40] components.

{properties} OPTIONAL. A set of Property [p.44] components.

{parent} REQUIRED. The Service [p.65] component that contains this component in its {endpoints
[p.65] } property.

For each Endpoint [p.68] component in the {endpoints [p.65] } property of a Service [p.65] component,
the {name [p.68] } property MUST be unique.

For each Endpoint [p.68] component in the {endpoints [p.65] } property of a Service [p.65] component,
the {binding [p.68] } property MUST either be a Binding [p.50] component with an unspecified {interface
[p.50] } property or a Binding [p.50] component with an {interface [p.50] } property equal to the {inter-
face [p.65] } property of the Service [p.65] component.

68

2.15 Endpoint

2.15.2 XML Representation of Endpoint Component

<description>
 <service>
 < endpoint
 name=" xs:NCName"
 binding=" xs:QName"
 address=" xs:anyURI "? >
 <documentation />*
 [<feature /> | <property />]*
 </ endpoint>+
 </service>
</description>

The XML representation for a Endpoint [p.68] component is an element information item with the follow-
ing Infoset properties:

A [local name] of endpoint .

A [namespace name] of "http://www.w3.org/2006/01/wsdl".

Two or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item as described below in 2.15.2.1 name attribute
information item with endpoint [owner element] [p.70] .

A REQUIRED binding attribute information item as described below in 2.15.2.2 binding
attribute information item with endpoint [owner element] [p.70] .

An OPTIONAL address attribute information item as described below in 2.15.2.3 address
attribute information item with endpoint [owner element] [p.70] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items (see 5. Documentation [p.84]).

2. Zero or more element information items from among the following, in any order:

Zero or more feature element information items 2.7.2 XML Representation of Feature
Component [p.43]

Zero or more property element information items 2.8.2 XML Representation of Prop-
erty Component [p.47]

Zero or more namespace-qualified element information items whose [namespace name] is
NOT "http://www.w3.org/2006/01/wsdl". Such element information items are considered to
be endpoint extension elements as described below (see 2.15.2.4 Endpoint extension
elements [p.70]).

69

2.15 Endpoint

2.15.2.1 name attribute information item with endpoint [owner element]

The name attribute information item together with the targetNamespace attribute information item
of the description element information item forms the QName of the endpoint.

The name attribute information item has the following Infoset properties:

A [local name] of name .

A [namespace name] which has no value.

The type of the name attribute information item is xs:NCName.

2.15.2.2 binding attribute information item with endpoint [owner element]

The binding attribute information item refers, by QName, to a Binding [p.50] component

The binding attribute information item has the following Infoset properties:

A [local name] of binding

A [namespace name] which has no value

The type of the binding attribute information item is xs:QName.

2.15.2.3 address attribute information item with endpoint [owner element]

The address attribute information item specifies the address of the endpoint.

The address attribute information item has the following Infoset properties:

A [local name] of address

A [namespace name] which has no value

The type of the address attribute information item is xs:anyURI.

2.15.2.4 Endpoint extension elements

Endpoint extension elements are used to provide information specific to a particular endpoint in a server.
The semantics of such element information items are defined by the specification for those element infor-
mation items. Such specifications are expected to annotate the Endpoint [p.68] component with additional
properties and specify the mapping from the XML representation to those properties.

2.15.3 Mapping Endpoint’s XML Representation to Component Properties

The mapping from the XML Representation of the endpoint element information item (see 2.15.2 XML
Representation of Endpoint Component [p.69]) to the properties of the Endpoint [p.68] component is
as described in Table 2-15 [p.71] .

70

2.15 Endpoint

Table 2-15. Mapping from XML Representation to Endpoint Component Properties

Property Value

{name [p.68] } The actual value of the name attribute information item.

{binding [p.68] }
The Binding [p.50] component resolved to by the actual value of the binding
attribute information item (see 2.19 QName resolution [p.72]).

{address [p.68] }
The actual value of the address attribute information item if present, otherwise
empty.

{features [p.68] }
The set of Feature [p.40] components corresponding to the feature element
information items in [children], if any.

{properties [p.68]
}

The set of Property [p.44] components corresponding to the property element
information items in [children], if any.

{parent [p.68] }
The Service [p.65] component corresponding to the service element information
item in [parent].

2.16 XML Schema 1.0 Simple Types Used in the Component Model

The XML Schema 1.0 simple types [XML Schema: Datatypes [p.92]] used in this specification are:

xs:token

xs:NCName

xs:anyURI

xs:QName

xs:boolean

2.17 Equivalence of Components

Two component instances of the same type are considered equivalent if, for each property of the first
component, there is a corresponding property with an equivalent value on the second component, and vice
versa.

Instances of properties of the same type are considered equivalent if their values are equivalent.

For values of a simple type (see 2.16 XML Schema 1.0 Simple Types Used in the Component
Model [p.71]) this means that they contain the same values. For instance, two string values are
equivalent if they contain the same sequence of Unicode characters, as described in [Character
Model for the WWW [p.92]]

71

2.16 XML Schema 1.0 Simple Types Used in the Component Model

Values which are references to other components are considered equivalent when they refer to equiv-
alent components (as determined above).

List-based values are considered equivalent if they have the same length and their elements at corre-
sponding positions are equivalent.

Finally, set-based values are considered equivalent if for each value in the first, there is an equivalent
value in the second, and vice versa.

Extension properties which are not string values, sets of strings or references MUST describe their values’
equivalence rules.

Because different top-level components (e.g., Interface [p.18] , Binding [p.50] , and Service [p.65]) are
required to have different names, it is possible to determine whether two top-level components of a given
type are equivalent by examining their {name} property.

2.18 Symbol Spaces

This specification defines three symbol spaces, one for each top-level component type (Interface [p.18] ,
Binding [p.50] and Service [p.65]).

Within a symbol space, all qualified names (that is, the {name} property) are unique. Between symbol
spaces, the names need not be unique. Thus it is perfectly coherent to have, for example, a binding and an
interface that have the same name.

When XML Schema is being used as one of the type systems for a WSDL 2.0 description, then six other
symbol spaces also exist, one for each of: global element declarations, global attribute declarations, named
model groups, named attribute groups, type definitions and key constraints, as defined by [XML Schema:
Structures [p.92]]. Other type systems may define additional symbol spaces.

2.19 QName resolution

In its serialized form WSDL 2.0 makes significant use of references between components. Such references
are made using the Qualified Name, or QName, of the component being referred to. QNames are a tuple,
consisting of two parts; a namespace name and a local name. The namespace name for a component is
represented by the value of the targetNamespace attribute information item of the [parent]
description element information item and the local name is represented by the {name [p.72] } prop-
erty of the component.

QName references are resolved by looking in the appropriate property of the Description [p.14] compo-
nent. For example, to resolve a QName of an interface (as referred to by the interface attribute infor-
mation item on a binding), the {interfaces [p.14] } property of the Description [p.14] component would be
inspected.

If the appropriate property of the Description [p.14] component does not contain a component with the
required QName then the reference is a broken reference. It is an error for a Description [p.14] component
to have such broken references.

72

2.18 Symbol Spaces

2.20 Comparing URIs and IRIs

This specification uses absolute URIs and IRIs to identify several components (for example, features and
properties) and components characteristics (for example, operation message exchange patterns and styles).
When such absolute URIs and IRIs are being compared to determine equivalence (see 2.17 Equivalence
of Components [p.71]) they MUST be compared character-by-character as indicated in [IETF RFC 3987
[p.92]].

3. Types
<description>
 < types>
 <documentation />*
 [<xs:import namespace=" xs:anyURI " schemaLocation=" xs:anyURI "? /> |
 <xs:schema targetNamespace=" xs:anyURI " /> |
 other extension elements]*
 </ types>
</description>

The content of messages and faults may be constrained using type system components. These constraints
are based upon a specific data model, and expressed using a particular schema language.

Although a variety of data models can be accommodated (through WSDL 2.0 extensions), this specifica-
tion only defines a means of expressing constraints based upon the XML Infoset [XML Information Set
[p.92]]. Furthermore, although a number of alternate schema languages can be used to constrain the XML
Infoset (as long as they support the semantics of either inlining or importing schema), this specification
only defines the use of XML Schema [XML Schema: Structures [p.92]], [XML Schema: Datatypes [p.92]
].

Specifically, the {element declarations [p.14] } and {type definitions [p.14] } properties of the Description
[p.14] component are collections of imported and inlined schema components that describe Infoset
element information items.

When extensions are used to enable the use of a non-Infoset data model, or a non-Schema constraint
language, the wsdl:required attribute information item MAY be used to require support for that
extension.

Note:

Support for the W3C XML Schema [XML Schema: Structures [p.92]], [XML Schema: Datatypes [p.92]]
is included in the conformance criteria for WSDL 2.0 documents (see 3.1 Using W3C XML Schema
Description Language [p.74]).

The schema components contained in the {element declarations [p.14] } property of the Description [p.14]
component provide the type system used for Interface Message Reference [p.32] and Interface Fault [p.22]
components. Interface Message Reference [p.32] components indicate their structure and content by using
the standard attribute information items element , or for alternate schema languages in which these
concepts do not map well, by using alternative attribute information item extensions. Interface Fault [p.22]
components behave similarly. Such extensions should define how they reference type system components.

73

3. Types

Such type system components MAY appear in additional collection properties on the Description [p.14]
component.

The schema components contained in the {type definitions [p.14] } property of the Description [p.14]
component provide the type system used for constraining the values of properties described by Property
[p.44] components. Extensions in the form of attribute information items can be used to refer to
constraints (type definitions or analogous constructs) described using other schema languages or type
systems. Such components MAY appear in additional collection properties on the Description [p.14]
component.

The types element information item encloses data type definitions, based upon the XML Infoset, used to
define messages and has the following Infoset properties:

A [local name] of types .

A [namespace name] of "http://www.w3.org/2006/01/wsdl".

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
http://www.w3.org/2006/01/wsdl

Zero or more element information items amongst its [children] as follows:

Zero or more documentation element information items (see 5. Documentation [p.84]) in
its [children] property.

Zero or more element information items from among the following, in any order:

xs:import element information items

xs:schema element information items

Other namespace qualified element information items whose namespace is NOT
http://www.w3.org/2006/01/wsdl

3.1 Using W3C XML Schema Description Language

XML Schema MAY be used as the schema language via import or inlining.

A WSDL 2.0 document MUST NOT refer to XML Schema components in a given namespace unless an
xs:import or xs:schema element information item for that namespace is present or the namespace is
the XML Schema namespace which contains built-in types as defined in XML Schema Part 2: Datatypes
Second Edition [XML Schema: Datatypes [p.92]]. That is, using the xs:import or xs:schema
element information item is a necessary condition for making XML Schema components, other than the
built-in components, referenceable within a WSDL 2.0 document.

Table 3-1 [p.75] summarizes the referenceability of schema components.

74

3.1 Using W3C XML Schema Description Language

Table 3-1. Referenceability of schema components

XML Representation
Referenceability of XML Schema

Components

Including descrip-
tion

description/include

XML Schema components in the
included Description [p.14] compo-
nent’s {element declarations [p.14] }
and {type definitions [p.14] } properties
are referenceable.

Importing descrip-
tion

description/import
None of the XML Schema Components
in the imported Description [p.14]
component are referenceable.

Importing XML
Schema

description/types/xs:import
Element Declaration [p.14] and Type
Definition [p.14] components in the
imported namespace are referenceable.

Inlined XML
Schema

description/types/xs:schema
Element Declaration [p.14] and Type
Definition [p.14] components in the
inlined XML Schema are referenceable.

3.1.1 Importing XML Schema

Importing an XML Schema uses the syntax and semantics of the xs:import mechanism defined by
XML Schema [XML Schema: Structures [p.92]], [XML Schema: Datatypes [p.92]], with the differences
defined in this and the following section. The schema components defined in the imported namespace are
referenceable by QName (see 2.19 QName resolution [p.72]). Only components in the imported names-
pace are referenceable in the WSDL 2.0 document.

A child element information item of the types element information item is defined with the Infoset prop-
erties as follows:

A [local name] of "import".

A [namespace name] of "http://www.w3.org/2001/XMLSchema".

One or two attribute information items as follows:

A REQUIRED namespace attribute information item as described below.

An OPTIONAL schemaLocation attribute information item as described below.

75

3.1 Using W3C XML Schema Description Language

3.1.1.1 namespace attribute information item

The namespace attribute information item defines the namespace of the element declarations and type
definitions imported from the referenced schema. The referenced schema MUST contain a target-
Namespace attribute information item on its xs:schema element information item. The value of the
targetNamespace attribute information item of the xs:schema element information item of an
imported schema MUST equal the value of the namespace of the import element information item in
the importing WSDL 2.0 document. Note that a WSDL 2.0 document must not import a schema that does
not have a targetNamespace attribute information item on its xs:schema element information item.
Such schemas must first be included (using xs:include) in a schema that contains a targetNames-
pace attribute information item on its xs:schema element information item, which can then be either
imported or inlined in the WSDL 2.0 document.

The namespace attribute information item has the following Infoset properties:

A [local name] of namespace

A [namespace name] which has no value.

The type of the namespace attribute information item is xs:anyURI.

3.1.1.2 schemaLocation attribute information item

The schemaLocation attribute information item, if present, provides a hint to the XML Schema
processor as to where the schema may be located. Caching and cataloging technologies may provide better
information than this hint. The schemaLocation attribute information item has the following Infoset
properties:

A [local name] of schemaLocation.

A [namespace name] which has no value.

The type of the schemaLocation attribute information item is xs:anyURI.

It is an error if a QName is not resolved (see 2.19 QName resolution [p.72]). When resolving QNames
references for schema definitions, the namespace MUST be imported by the referring WSDL 2.0 docu-
ment. If the namespace so referenced is contained in an inline schema, it MAY be imported without a
schemaLocation attribute, so long as the inline schema has been resolved in the current component
model.

3.1.2 Inlining XML Schema

Inlining an XML schema uses the existing top-level xs:schema element information item defined by
XML Schema [XML Schema: Structures [p.92]]. It may be viewed as simply cutting and pasting an exist-
ing schema document to a location inside the types element information item.

76

3.1 Using W3C XML Schema Description Language

The schema components defined and declared in the inlined schema document are referenceable by
QName (see 2.19 QName resolution [p.72]). Only components defined and declared in the schema itself
and components included by it via xs:include are referenceable. Specifically components that the schema
imports via xs:import are NOT referenceable.

Similarly, components defined in an inlined XML schema are NOT automatically referenceable within
WSDL 2.0 document that imported (using wsdl:import) the WSDL 2.0 document that inlines the
schema (see 4.2 Importing Descriptions [p.82] for more details). For this reason, it is recommended that
XML schema documents intended to be shared across several WSDL 2.0 documents be placed in separate
XML schema documents and imported using xs:import , rather than inlined inside a WSDL 2.0 docu-
ment.

Inside an inlined XML schema, the xs:import and xs:include element information items MAY be
used to refer to other XML schemas inlined in the same or other WSDL 2.0 document, provided that an
appropriate value, such as a fragment identifier (see [XML Schema: Structures [p.92]] 4.3.1) is specified
for their schemaLocation attribute information items. For xs:import , the schemaLocation
attribute is not required so long as the namespace has been resolved in the current component model. The
semantics of such element information items are governed solely by the XML Schema specification [XML
Schema: Structures [p.92]].

A WSDL 2.0 document MAY inline two or more schemas from the same targetNamespace . For
example, two or more inlined schemas may have the same targetNamespace provided that they do
not define the same elements or types. A WSDL 2.0 document MUST NOT define the same element or
type in more than one inlined schema. Note that it is the responsibility of the underlying XML Schema
processor to sort out a coherent set of schema components.

The xs:schema element information item has the following Infoset properties:

A [local name] of schema.

A [namespace name] of "http://www.w3.org/2001/XMLSchema".

A REQUIRED targetNamespace attribute information item, amongst its [attributes] as described
below.

Additional OPTIONAL attribute information items as specified for the xs:schema element infor-
mation item by the XML Schema specification.

Zero or more child element information items as specified for the xs:schema element information
item by the XML Schema specification.

3.1.2.1 targetNamespace attribute information item

The targetNamespace attribute information item defines the namespace of the element declarations
and type definitions inlined in its [owner element] xs:schema element information item. WSDL 2.0
modifies the XML Schema definition of the xs:schema element information item to make this attribute
information item required. The xs:schema element information item MUST contain a targetNames-
pace attribute information item. The targetNamespace attribute information item has the following

77

3.1 Using W3C XML Schema Description Language

Infoset properties:

A [local name] of targetNamespace.

A [namespace name] which has no value.

The type of the targetNamespace attribute information item is xs:anyURI.

3.1.3 References to Element Declarations and Type Definitions

Whether inlined or imported, the element declarations present in a schema are referenceable from an Inter-
face Message Reference [p.32] or Interface Fault [p.22] component. Similarly, regardless of whether they
are inlined or imported, the type definitions present in a schema are referenceable from a Property [p.44]
component.

A named, global xs:element declaration is referenceable from the element attribute information
item of an input , output or fault element information item. The QName is constructed from the
targetNamespace of the schema and the value of the name attribute information item of the
xs:element element information item. An element attribute information item MUST NOT refer to a
global xs:simpleType or xs:complexType definition.

A named, global xs:simpleType or xs:complexType declaration is referenceable from the
constraint attribute information item of property element information item. The QName is
constructed from the targetNamespace of the schema and the value of the name attribute information
item of the xs:simpleType or xs:complexType element information item. A constraint
attribute information item MUST NOT refer to a global xs:element definition.

3.2 Using Other Schema Languages

Since it is unreasonable to expect that a single schema language can be used to describe all possible Inter-
face Message Reference [p.32] , Interface Fault [p.22] and Property [p.44] component contents and their
constraints, WSDL 2.0 allows alternate schema languages to be specified via extensibility elements. An
extensibility element information item MAY appear under the types element information item to identify
the schema language employed, and to locate the schema instance defining the grammar for Interface
Message Reference [p.32] and Interface Fault [p.22] components or the constraint for Property [p.44]
components. Depending upon the schema language used, an element information item MAY be defined to
allow inlining, if and only if the schema language can be expressed in XML.

A specification of extension syntax for an alternative schema language MUST include the declaration of
an element information item, intended to appear as a child of the wsdl:types element information item,
which references, names, and locates the schema instance (an “import” element information item). The
extension specification SHOULD, if necessary, define additional properties of the Description [p.14]
component (and extensibility attributes) to hold the components of the referenced type system. It is
expected that additional extensibility attributes for Interface Message Reference [p.32] , Interface Fault
[p.22] and Property [p.44] components will also be defined, along with a mechanism for resolving the
values of those attributes to a particular imported type system component.

78

3.2 Using Other Schema Languages

A specification of extension syntax for an alternative schema language MUST use a namespace that is
different than the namespace of XML Schema. The namespace of the alternative schema language is used
for element information items that are children of the wsdl:types element information item and for any
extensibility attribute information items that appear on other components. The namespace used for an
alternate schema language MUST be an absolute IRI.

See [Alternative Schema Languages Support [p.93]] for examples of using other schema languages.
These examples reuse the {element declarations [p.14] } property of the Description [p.14] component and
the element attribute information items of the wsdl:input , wsdl:output and wsdl:fault
element information items.

Note:

This specification does not define the behavior of a WSDL 2.0 document that uses multiple schema
languages for describing type system components simultaneously.

3.3 Describing Messages that Refer to Services and Endpoints

Web services may exchange messages that refer to other Web services or Web service endpoints. If the
interface or binding of these referenced services or endpoints are known at description time, then it may be
useful to include this information in the WSDL 2.0 document that describes the Web service. WSDL 2.0
provides two global attribute information items, wsdlx:interface and wsdlx:binding that may
be used to annotate XML Schema components or components from other type description languages.

WSDL 2.0 defines the use of these global attribute information items to annotate XML Schema compo-
nents that use the xs:anyURI simple type in an element information item or attribute information item
for endpoint addresses that correspond to the {address [p.68] } property of the Endpoint [p.68] component.
However, the use of these global attribute information items is not limited to simple types based on
xs:anyURI . They may be used for any other types that are used to refer to Web services or Web service
endpoints, e.g. a WS-Addressing Endpoint Reference [WSA 1.0 Core [p.93]]. See the primer [WSDL 2.0
Primer [p.93]] for more information and examples.

3.3.1 wsdlx:interface attribute information item

WSDL 2.0 provides a global attribute information item with the following Infoset properties:

A [local name] of interface .

A [namespace name] of " http://www.w3.org/2006/01/wsdl-extensions ".

The type of the wsdlx:interface attribute information item is an xs:QName that specifies the {name
[p.18] } property of an Interface [p.18] component.

79

3.3 Describing Messages that Refer to Services and Endpoints

3.3.2 wsdlx:binding attribute information item

WSDL 2.0 provides a global attribute information item with the following Infoset properties:

A [local name] of binding .

A [namespace name] of " http://www.w3.org/2006/01/wsdl-extensions ".

The type of the wsdlx:binding attribute information item is an xs:QName that specifies the {name
[p.50] } property of an Binding [p.50] component.

3.3.3 wsdlx:interface and wsdlx:binding Consistency

The wsdlx:interface and wsdlx:binding attributes may be used either independently or
together. If wsdlx:interface and wsdlx:binding are used together then they MUST satisfy the
same consistency rules that apply to the {interface [p.65] } property of a Service [p.65] component and the
{binding [p.68] } property of a nested Endpoint [p.68] component, that is either the binding refers the
interface of the service or the binding refers to no interface.

3.3.4 Use of wsdlx:interface and wsdlx:binding with xs:anyURI

wsdlx:interface and wsdlx:binding may be used to describe element information items and
attribute information items whose type is xs:anyURI or a restriction of it, to describe messages that
contain the {address [p.68] } property of an Endpoint [p.68] . This is accomplished by including the
wsdlx:interface and/or wsdlx:binding attribute information item in the xs:element ,
xs:simpleType , or xs:attribute element information item of the corresponding XML Schema
component.

4. Modularizing WSDL 2.0 descriptions
This specification provides two mechanisms, described in this section, for modularizing WSDL 2.0
descriptions. These mechanisms help to make WSDL 2.0 descriptions clearer by allowing separation of
the various components of a description. Such separation could be performed according to the level of
abstraction of a given set of components, or according to the namespace affiliation required of a given set
of components or according to some other grouping such as application applicability.

Both mechanisms work at the level of WSDL 2.0 components and NOT at the level of XML Information
Sets or XML 1.0 serializations.

4.1 Including Descriptions
<description>
 < include
 location=" xs:anyURI " >
 <documentation />*
 </ include>
</description>

80

4. Modularizing WSDL 2.0 descriptions

The WSDL 2.0 include element information item allows for the separation of different components of a
service definition, belonging to the same target namespace, into independent WSDL 2.0 documents.

The WSDL 2.0 include element information item is modeled after the XML Schema include element
information item (see [XML Schema: Structures [p.92]], section 4.2.3 "References to schema components
in the same namespace"). Specifically, it can be used to include components from WSDL 2.0 descriptions
that share a target namespace with the including description. Components in the transitive closure of the
included WSDL 2.0 documents become part of the Description [p.14] component of the including WSDL
2.0 document. The included components can be referenced by QName. Note that because all WSDL 2.0
descriptions have a target namespace, no-namespace includes (sometimes known as “chameleon
includes”) never occur in WSDL 2.0.

A mutual include is direct inclusion by one WSDL 2.0 document of another WSDL 2.0 document which
includes the first. A circular include achieves the same effect with greater indirection (A s B includes C
includes A, for instance). Multiple inclusion of a single WSDL 2.0 document resolves to a single set of
components. Mutual, multiple, and circular includes are explicitly permitted, and do not represent multiple
redefinitions of the same components. Multiple inclusion of a single WSDL 2.0 document has the same
meaning as including it only once.

The include element information item has:

A [local name] of include .

A [namespace name] of "http://www.w3.org/2006/01/wsdl".

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED location attribute information item as described below in 4.1.1 location
attribute information item with include [owner element] [p.81] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information item amongst its [children], as follows:

Zero or more documentation element information items (see 5. Documentation [p.84]).

Zero or more namespace-qualified element information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

4.1.1 location attribute information item with include [owner element]

The location attribute information item has the following Infoset properties:

A [local name] of location .

A [namespace name] which has no value.

81

4.1 Including Descriptions

A location attribute information item is of type xs:anyURI . Its actual value is the location of some
information about the namespace identified by the targetNamespace attribute information item of the
containing description element information item.

It is an error if the IRI indicated by location does not resolve to a WSDL 2.0 document.

The actual value of the targetNamespace attribute information item of the included WSDL 2.0 docu-
ment MUST match the actual value of the targetNamespace attribute information item of the
description element information item which is the [parent] of the include element information
item.

4.2 Importing Descriptions
<description>
 < import
 namespace=" xs:anyURI " location=" xs:anyURI "? >
 <documentation />*
 </ import>
</description>

Every top-level WSDL 2.0 component is associated with a target namespace. On its wsdl:descrip-
tion element information item, a WSDL 2.0 document carries a targetNamespace attribute informa-
tion item that associates the document with a target namespace. This section describes the syntax and
mechanisms by which references may be made from within a WSDL 2.0 document to components not
within the document’s target namespace. In addition to this syntax, there is an optional facility for suggest-
ing the IRI of a WSDL 2.0 document containing definition components from that foreign target names-
pace.

The WSDL 2.0 import element information item is modeled after the XML Schema import element
information item (see [XML Schema: Structures [p.92]], section 4.2.3 "References to schema components
across namespaces"). Specifically, it can be used to import components from WSDL descriptions that do
not share a target namespace with the importing document. The WSDL 2.0 import element information
item identifies namespaces used in foreign references. The existence of the WSDL 2.0 import element
information item signals that the WSDL 2.0 document may contain references to foreign components. The
wsdl:import element information item is therefore like a forward declaration for other namespaces.

As with XML schema, each WSDL 2.0 document making references to components in a given (foreign)
namespace MUST have a wsdl:import element information item for that namespace (but not necessar-
ily providing a location attribute information item identifying the WSDL 2.0 document in which the
referenced component is declared). In other respects, the visibility of components is pervasive; if two
WSDL 2.0 documents import the same namespace then they will have access to the same components
from the imported namespace (i.e. regardless of which, if any, location attribute information item
values are provided on the respective wsdl:import element information items.)

Using the wsdl:import element information item is a necessary condition for making components from
another namespace available to a WSDL 2.0 document. That is, a WSDL 2.0 document can only refer to
components in a namespace other than its own target namespace if the WSDL 2.0 document contains an
wsdl:import element information item for that foreign namespace.

82

4.2 Importing Descriptions

This specification does not preclude repeating the wsdl:import element information item for the same
value of the namespace attribute information item as long as they provide different values for the
location attribute information item. Repeating the wsdl:import element information item for the
same namespace value MAY be used as a way to provide alternate locations to find information about a
given namespace.

Furthermore, this specification DOES NOT require the location attribute information item to be deref-
erenceable. If it is not dereferenceable then no information about the imported namespace is provided by
that wsdl:import element information item. It is possible that such lack of information can cause
QNames in other parts of a WSDL 2.0 Description [p.14] component to become broken references (see
2.19 QName resolution [p.72]). Such broken references are not errors of the wsdl:import element
information item but rather QName resolution errors which must be detected as described in 2.19 QName
resolution [p.72] .

The import element information item has the following Infoset properties:

A [local name] of import .

A [namespace name] of "http://www.w3.org/2006/01/wsdl".

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED namespace attribute information item as described below in 4.2.1 namespace
attribute information item [p.83] .

An OPTIONAL location attribute information item as described below in 4.2.2 location
attribute information item with import [owner element] [p.84] .

Zero or more namespace qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

Zero or more element information items amongst its [children], as follows:

Zero or more documentation element information items (see 5. Documentation [p.84]).

Zero or more namespace-qualified element information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl".

4.2.1 namespace attribute information item

The namespace attribute information item has the following Infoset properties:

A [local name] of namespace .

A [namespace name] which has no value.

The namespace attribute information item is of type xs:anyURI . Its actual value indicates that the
containing WSDL 2.0 document MAY contain qualified references to WSDL 2.0 definitions in that
namespace (via one or more prefixes declared with namespace declarations in the normal way). This value

83

4.2 Importing Descriptions

MUST NOT match the actual value of targetNamespace attribute information item in the enclosing
WSDL 2.0 document. If the location attribute in the import element information item references a
WSDL 2.0 document, then the actual value of the namespace attribute information item MUST be iden-
tical to the actual value of the targetNamespace attribute information item in the referenced WSDL
2.0 document.

4.2.2 location attribute information item with import [owner element]

The location attribute information item has the following Infoset properties:

A [local name] of location .

A [namespace name] which has no value.

The location attribute information item is of type xs:anyURI . Its actual value, if present, gives a
hint as to where a serialization of a WSDL 2.0 document with definitions for the imported namespace can
be found.

The location attribute information item is optional. This allows WSDL 2.0 components to be
constructed from information other than serialized XML 1.0 or a WSDL 2.0 document. It also allows the
development of WSDL 2.0 processors that have a prior (i.e., built-in) knowledge of certain namespaces.

5. Documentation
<documentation>
 [extension elements]*
</ documentation>

WSDL 2.0 uses the optional documentation element information item as a container for human read-
able and/or machine processable documentation. The content of the element information item is arbitrary
character information items and element information items ("mixed" content in XML Schema[XML
Schema: Structures [p.92]]). The documentation element information item is allowed inside any
WSDL 2.0 element information item.

Like other element information items in the "http://www.w3.org/2006/01/wsdl" namespace, the docu-
mentation element information item allows qualified attribute information items whose [namespace
name] is not "http://www.w3.org/2006/01/wsdl". The xml:lang attribute (see [XML 1.0 [p.92]]) MAY
be used to indicate the language used in the contents of the documentation element information item.

The documentation element information item has:

A [local name] of documentation .

A [namespace name] of "http://www.w3.org/2006/01/wsdl".

Zero or more attribute information items in its [attributes] property.

84

5. Documentation

Zero or more child element information items in its [children] property.

Zero or more character information items in its [children] property.

6. Language Extensibility
In addition to extensibility implied by the Feature [p.40] and Property [p.44] components described above,
the schema for WSDL 2.0 has a two-part extensibility model based on namespace-qualified elements and
attributes. An extension is identified by the QName consisting of its namespace IRI and its element name.
The meaning of an extension SHOULD be defined (directly or indirectly) in a document that is available
at its namespace IRI.

6.1 Element based Extensibility

WSDL 2.0 allows extensions to be defined in terms of element information items. Where indicated herein,
WSDL 2.0 allows namespace-qualified element information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl" to appear among the [children] of specific element information items
whose [namespace name] is "http://www.w3.org/2006/01/wsdl". Such element information items MAY be
used to annotate WSDL 2.0 constructs such as interface, operation, etc.

It is expected that extensions will want to add to the existing properties of components in the component
model. The specification for an extension element information item should include definitions of any such
properties and the mapping from the XML representation of the extension to the properties in the compo-
nent model.

The WSDL 2.0 schema also defines a base type for use by extensibility elements. Example 6-1 [p.85]
shows the type definition. The use of this type as a base type is optional. The element declarations which
serve as the heads of the defined substitution groups are all of type "xs:anyType".

Extensibility elements are commonly used to specify some technology-specific binding. They allow inno-
vation in the area of network and message protocols without having to revise the base WSDL 2.0 specifi-
cation. WSDL 2.0 recommends that specifications defining such protocols also define any necessary
WSDL 2.0 extensions used to describe those protocols or formats.

Example 6-1. Base type for extensibility elements

<xs:complexType name=’ExtensibilityElement’ abstract=’true’ >
 <xs:attribute ref=’wsdl:required’ use=’optional’ />
</xs:complexType>

6.1.1 Mandatory extensions

Extension elements can be marked as mandatory by annotating them with a wsdl:required attribute
information item (see 6.1.2 required attribute information item [p.87]) with a value of "true". A
mandatory extension is an extension that MAY change the meaning of the element to which it is attached,
such that the meaning of that element is no longer governed by this specification. Instead, the meaning of
an element containing a mandatory extension is governed by the meaning of that extension. Thus, the defi-

85

6. Language Extensibility

nition of the element’s meaning is delegated to the specification that defines the extension.

An extension that is NOT marked as mandatory MUST NOT invalidate the meaning of any part of the
WSDL 2.0 document. Thus, a NON-mandatory extension merely provides additional description of capa-
bilities of the service. This specification does not provide a mechanism to mark extension attributes as
being required. Therefore, all extension attributes are NON-mandatory.

Note:

A mandatory extension is considered mandatory because it has the ability to change the meaning of the
element to which it is attached. Thus, the meaning of the element may not be fully understood without
understanding the attached extension. A NON-mandatory extension, on the other hand, can be safely
ignored without danger of misunderstanding the rest of the WSDL 2.0 document.

If a WSDL 2.0 document declares an extension, Feature or Property as optional (i.e., NON-mandatory),
then the Web service MUST NOT assume that the client supports that extension, Feature or Property,
unless the Web service knows (through some other means) that the client has in fact elected to engage and
support that extension, Feature or Property.

Note:

A key purpose of an extension is to formally indicate (i.e., in a machine-processable way) that a particular
feature or convention is supported or required. This enables toolkits that understand the extension to
engage it automatically, while toolkits that do not yet understand a required extension may be able to flag
it to an operator for manual support.

If a Web service requires the client to follow a particular convention that is likely to be automatable in
WSDL 2.0 toolkits, then that convention SHOULD be indicated in the WSDL 2.0 document as a
wsdl:required extension, rather than just being conveyed out of band, even if that convention is not
currently implemented in WSDL 2.0 toolkits.

This practice will help prevent interoperability problems that could arise if one toolkit requires a particular
convention that is not indicated in the WSDL 2.0 document, while another toolkit does not realize that that
convention is required. It will also help facilitate future automatic processing by WSDL 2.0 toolkits.

On the other hand, a client MAY engage an extension, Feature or Property that is declared as optional in
the WSDL 2.0 document. Therefore, the Web service MUST support every extension, Feature or Property
that is declared as optional in the WSDL 2.0 document, in addition to supporting every extension, Feature
or Property that is declared as mandatory.

Note:

If finer-grain, direction-sensitive control of extensions, Features or Properties is desired, then such exten-
sions, Features or Properties may be designed in a direction-sensitive manner (from the client or from the
Web service) so that either direction may be separately marked required or optional. For example, instead
of defining a single extension that governs both directions, two extensions could be defined -- one for each
direction.

86

6.1 Element based Extensibility

6.1.2 required attribute information item

WSDL 2.0 provides a global attribute information item with the following Infoset properties:

A [local name] of required .

A [namespace name] of "http://www.w3.org/2006/01/wsdl".

The type of the required attribute information item is xs:boolean. Its default value is "false" (hence
extensions are NOT required by default).

6.2 Attribute-based Extensibility

WSDL 2.0 allows qualified attribute information items whose [namespace name] is NOT
"http://www.w3.org/2006/01/wsdl" to appear on any element information item whose namespace name IS
"http://www.w3.org/2006/01/wsdl". Such attribute information items can be used to annotate WSDL 2.0
constructs such as interfaces, bindings, etc.

WSDL 2.0 does not provide a mechanism for marking extension attribute information items as mandatory.

6.3 Extensibility Semantics

As indicated above, it is expected that the presence of extensibility elements and attributes will result in
additional properties appearing in the component model.

The presence of an optional extensibility element or attribute MAY therefore augment the semantics of a
WSDL 2.0 document in ways that do not invalidate the existing semantics. However, the presence of a
mandatory extensibility element MAY alter the semantics of a WSDL 2.0 document in ways that invali-
date the existing semantics.

Extensibility elements SHOULD NOT alter the existing semantics in ways that are likely to confuse users.

Note:

However, once the client and service both know that an optional feature has been engaged (because the
service has received a message explicitly engaging that feature, for example), then the semantics of that
feature supersede what the WSDL 2.0 document indicated. For example, the WSDL 2.0 document may
have specified an XML message schema to be used, but also indicated an optional security feature that
encrypts the messages. If the security feature is engaged, then the encrypted messages will no longer
conform to the specified message schema (until they are decrypted).

Note:

Authors of extensibility elements should make sure to include in the specification for such elements a
clear statement of the requirements for document conformance (see 1.2 Document Conformance [p.8]).

87

6.2 Attribute-based Extensibility

7. Locating WSDL 2.0 Documents
As an XML vocabulary, WSDL documents, WSDL fragments or references to WSDL components -via
QNames- MAY appear within other XML documents. This specification defines a global attribute, wsdl-
Location , to help with QName resolution (see 2.19 QName resolution [p.72]). This attribute allows
an element that contains such references to be annotated to indicate where the WSDL for a namespace (or
set of namespaces) can be found. In particular, this attribute is expected to be useful when using service
references in message exchanges.

The wsdlLocation global attribute is defined in the namespace
"http://www.w3.org/2006/01/wsdl-instance" (hereafter referred to as "wsdli:wsdlLocation", for brevity).
This attribute MAY appear on any XML element which allows attributes from other namespaces to occur.
It MUST NOT appear on a wsdl:description element or any of its children/descendants.

A normative XML Schema [XML Schema: Structures [p.92]], [XML Schema: Datatypes [p.92]] docu-
ment for the "http://www.w3.org/2006/01/wsdl-instance" namespace can be found at
http://www.w3.org/2006/01/wsdl-instance.

7.1 wsdli:wsdlLocation attribute information item

WSDL 2.0 provides a global attribute information item with the following Infoset properties:

A [local name] of wsdlLocation .

A [namespace name] of "http://www.w3.org/2006/01/wsdl-instance".

The type of the wsdlLocation attribute information item is a list xs:anyURI (of even length). Its actual
value MUST be a list of pairs of IRIs; where the first IRI of a pair, which MUST be an absolute IRI as
defined in [IETF RFC 3987 [p.92]], indicates a WSDL 2.0 (or 1.1) namespace name, and, the second a
hint as to the location of a WSDL 2.0 document defining WSDL 2.0 components (or WSDL 1.1 elements
[WSDL 1.1 [p.93]]) for that namespace name. The second IRI of a pair MAY be absolute or relative.

8. Conformance
This sections describes how this specification conforms to other specifications. At present, only one other
specification, XML Information Set, is included here. Refer to 1.2 Document Conformance [p.8] for a
description of the criteria that Web service description documents must satisfy in order to conform to this
specification.

8.1 XML Information Set Conformance

This specification conforms to the [XML Information Set [p.92]]. The following information items MUST
be present in the input Infosets to enable correct processing of WSDL 2.0 documents:

88

7. Locating WSDL 2.0 Documents

http://www.w3.org/2006/01/wsdl-instance

Document Information Items with [children] and [base URI] properties.

Element Information Items with [namespace name], [local name], [children], [attributes], [base URI]
and [parent] properties.

Attribute Information Items with [namespace name], [local name] and [normalized value] properties.

Character Information Items with [character code], [element content whitespace] and [parent] prop-
erties.

9. XML Syntax Summary (Non-Normative)
<description targetNamespace=" xs:anyURI " >
 <documentation />?

 <import namespace=" xs:anyURI " location=" xs:anyURI "? >
 <documentation />*
 </import>*

 <include location=" xs:anyURI " >
 <documentation />*
 </include>*

 <types>
 <documentation />*

 [<xs:import namespace=" xs:anyURI " schemaLocation=" xs:anyURI "? /> |
 <xs:schema targetNamespace=" xs:anyURI " /> |
 other extension elements]*
 </types>

 <interface name=" xs:NCName" extends=" list of xs:QName "? styleDefault=" list of xs:anyURI "? >
 <documentation />*

 <fault name=" xs:NCName" element=" xs:QName"? >
 <documentation />*

 <feature ... />*

 <property ... />*
 </fault>*

 <operation name=" xs:NCName" pattern=" xs:anyURI " style=" list of xs:anyURI "? >
 <documentation />*

 <input messageLabel=" xs:NCName"? element=" union of xs:QName, xs:token "? >
 <documentation />*

 <feature ... />*

 <property ... />*
 </input>*

 <output messageLabel=" xs:NCName"? element=" union of xs:QName, xs:token "? >
 <documentation />*

 <feature ... />*

89

9. XML Syntax Summary (Non-Normative)

 <property ... />*
 </output>*

 <infault ref=" xs:QName" messageLabel=" xs:NCName"? >
 <documentation />*

 <feature ... />*

 <property ... />*
 </infault>*

 <outfault ref=" xs:QName" messageLabel=" xs:NCName"? >
 <documentation />*

 <feature ... />*

 <property ... />*
 </outfault>*

 <feature ... />*

 <property ... />*
 </operation>*

 <feature ref=" xs:anyURI " required=" xs:boolean "? >
 <documentation />*
 </feature>*

 <property ref=" xs:anyURI " >
 <documentation />*

 <value> xs:anyType </value>?

 <constraint> xs:QName </constraint>?
 </property>*
 </interface>*

 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI " >
 <documentation />*

 <fault ref=" xs:QName" >
 <documentation />*

 <feature ... />*

 <property ... />*
 </fault>*

 <operation ref=" xs:QName" >
 <documentation />*

 <input messageLabel=" xs:NCName"? >
 <documentation />*

 <feature ... />*

 <property ... />*
 </input>*

 <output messageLabel=" xs:NCName"? >

90

9. XML Syntax Summary (Non-Normative)

 <documentation />*

 <feature ... />*

 <property ... />*
 </output>*

 <infault ref=" xs:QName" messageLabel=" xs:NCName"? >
 <documentation />*

 <feature ... />*

 <property ... />*
 </infault>*

 <outfault ref=" xs:QName" messageLabel=" xs:NCName"? >
 <documentation />*

 <feature ... />*

 <property ... />*
 </outfault>*

 <feature ... />*

 <property ... />*
 </operation>*

 <feature ... />*

 <property ... />*
 </binding>*

 <service name=" xs:NCName" interface=" xs:QName" >
 <documentation />*

 <endpoint name=" xs:NCName" binding=" xs:QName" address=" xs:anyURI "? >
 <documentation />*

 <feature ... />*

 <property ... />*
 </endpoint>*

 <feature ... />*

 <property ... />*
 </service>*
</description>

10. References

10.1 Normative References

[IETF RFC 2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, Author. Internet Engineering
Task Force, June 1999. Available at http://www.ietf.org/rfc/rfc2119.txt.

91

10. References

http://www.ietf.org/rfc/rfc2119.txt

[IETF RFC 3986]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3986.txt.

[IETF RFC 3987]
Internationalized Resource Identifiers (IRIs), M. Duerst, M. Suignard, Authors. Internet Engineering
Task Force, January 2005. Available at http://www.ietf.org/rfc/rfc3987.txt.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Third Edition), T. Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, and F. Yergeau, Editors. World Wide Web Consortium, 4 February 2004. This version of
the XML 1.0 Recommendation is http://www.w3.org/TR/2004/REC-xml-20040204/. The latest
version of "Extensible Markup Language (XML) 1.0" is available at
http://www.w3.org/TR/REC-xml.

[XML Information Set]
XML Information Set (Second Edition), J. Cowan and R. Tobin, Editors. World Wide Web Consor-
tium, 4 February 2004. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version of XML Information Set
is available at http://www.w3.org/TR/xml-infoset.

[XML Namespaces]
Namespaces in XML, T. Bray, D. Hollander, and A. Layman, Editors. World Wide Web Consortium,
14 January 1999. This version of the Namespaces in XML Recommendation is
http://www.w3.org/TR/1999/REC-xml-names-19990114. The latest version of Namespaces in XML
is available at http://www.w3.org/TR/REC-xml-names.

[XML Schema: Structures]
XML Schema Part 1: Structures, H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, Editors.
World Wide Web Consortium, 28 October 2004. This version of the XML Schema Part 1 Recom-
mendation is http://www.w3.org/TR/2004/REC-xmlschema-1-20041028. The latest version of XML
Schema Part 1 is available at http://www.w3.org/TR/xmlschema-1.

[XML Schema: Datatypes]
XML Schema Part 2: Datatypes, P. Byron and A. Malhotra, Editors. World Wide Web Consortium,
28 October 2004. This version of the XML Schema Part 2 Recommendation is
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028. The latest version of XML Schema Part
2 is available at http://www.w3.org/TR/xmlschema-2.

[RFC 3023]
IETF "RFC 3023: XML Media Types", M. Murata, S. St. Laurent, D. Kohn, July
1998.(Seehttp://www.ietf.org/rfc/rfc3023.txt.)

[WSDL 2.0 Adjuncts]
Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts , R. Chinnici, H. Haas, A.
Lewis, J-J. Moreau, D. Orchard, S. Weerawarana, Editors. World Wide Web Consortium, 6 January
2006. This version of the "Web Services Description Language (WSDL) Version 2.0 Part 2:
Adjuncts" Specification is available at http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106.
The latest version of "Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts" is
available at http://www.w3.org/TR/wsdl20-adjuncts.

[Character Model for the WWW]
Character Model for the World Wide Web 1.0: Fundamentals, M. Dürst, F. Yergeau, R. Ishida, M.
Wolf, T. Texin, Editors. W3C Recommendation, 15 February 2005. Latest version available at
http://www.w3.org/TR/charmod/.

92

10.1 Normative References

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.ietf.org/rfc/rfc3023.txt
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106
http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/2005/REC-charmod-20050215/

10.2 Informative References

[Alternative Schema Languages Support]
Discussion of Alternative Schema Languages and Type System Support in WSDL 2.0, A. Lewis, B.
Parsia, Editors. World Wide Web Consortium, 17 August 2005. This version of the "Discussion of
Alternative Schema Languages and Type System Support in WSDL 2.0" Working Group Note is
http://www.w3.org/TR/2005/NOTE-wsdl20-altschemalangs-20050817/. The latest version of
"Discussion of Alternative Schema Languages and Type System Support in WSDL 2.0" is available
at http://www.w3.org/TR/wsdl20-altschemalangs.

[IETF RFC 2045]
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies, N.
Freed, N. Borenstein, Authors. Internet Engineering Task Force, November 1996. Available at
http://www.ietf.org/rfc/rfc2045.txt.

[IETF RFC 2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee, Authors. Internet Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

[SOAP 1.2 Part 1: Messaging Framework]
SOAP Version 1.2 Part 1: Messaging Framework, M. Gudgin, M. Hadley, N. Mendelsohn, J-J.
Moreau, H. Frystyk Nielsen, Editors. World Wide Web Consortium, 24 June 2003. This version of
the "SOAP Version 1.2 Part 1: Messaging Framework" Recommendation is
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/. The latest version of "SOAP Version 1.2
Part 1: Messaging Framework" is available at http://www.w3.org/TR/soap12-part1/.

[WSA 1.0 Core]
Web Services Addressing 1.0 - Core , M. Gudgin, M. Hadley, Editors. World Wide Web Consortium,
17 August 2005. This version of Web Services Addressing 1.0 - Core is
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/ The latest version of the "Web Services
Addressing 1.0 - Core" document is available from http://www.w3.org/TR/ws-addr-core.

[WSDL 1.1]
Web Services Description Language (WSDL) 1.1, E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, Authors. World Wide Web Consortium, 15 March 2002. This version of the Web
Services Description Language 1.1 Note is http://www.w3.org/TR/2001/NOTE-wsdl-20010315. The
latest version of Web Services Description Language 1.1 is available at http://www.w3.org/TR/wsdl.

[WSDL 2.0 Primer]
Web Services Description Language (WSDL) Version 2.0 Part 0: Primer , D.Booth, C.K. Liu ,
Editors. World Wide Web Consortium, 6 January 2006. This version of the "Web Services Descrip-
tion Language (WSDL) Version 2.0 Part 0: Primer" Specification is available at
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060106. The latest version of "Web Services
Description Language (WSDL) Version 2.0 Part 0: Primer" is available at
http://www.w3.org/TR/wsdl20-primer.

[WSD Requirements]
Web Services Description Requirements, J. Schlimmer, Editor. World Wide Web Consortium, 28
October 2002. This version of the Web Services Description Requirements document is
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028. The latest version of Web Services
Description Requirements is available at http://www.w3.org/TR/ws-desc-reqs.

93

10.2 Informative References

http://www.w3.org/TR/2005/NOTE-wsdl20-altschemalangs-20050817/
http://www.w3.org/TR/wsdl20-altschemalangs
http://www.w3.org/TR/wsdl20-altschemalangs
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060106
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028
http://www.w3.org/TR/ws-desc-reqs/
http://www.w3.org/TR/ws-desc-reqs/

[XPointer Framework]
XPointer Framework,Paul Grosso, Eve Maler, Jonathan Marsh, Norman Walsh, Editors. World Wide
Web Consortium, 22 November 2002. This version of the XPointer Framework Proposed Recom-
mendation is http://www.w3.org/TR/2003/REC-xptr-framework-20030325/ The latest version of
XPointer Framework is available at http://www.w3.org/TR/xptr-framework/.

[XML Linking Language (XLink) 1.0]
XLinkSteve DeRose, Eve Maler, David Orchard, Editors. World Wide Web Consortium, 27 June
2001. This version of the XLink Recommendation is
http://www.w3.org/TR/2001/REC-xlink-20010627/ The latest version of XLink is available at
http://www.w3.org/TR/xlink/.

[XML 1.1]
Extensible Markup Language (XML) 1.1 , T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
Francois Yergau, and John Cowan, Editors. World Wide Web Consortium, 04 February 2004, edited
in place 15 April 2004. This version of the XML 1.1 Recommendation is
http://www.w3.org/TR/2004/REC-xml-20040204. The latest version of XML 1.1 is available at
http://www.w3.org/TR/xml11.

[Z Notation Reference Manual]
The Z Notation: A Reference Manual, Second Edition, J. M. Spivey, Prentice Hall, 1992.

[Fuzz 2000]
Release Notes For Fuzz 2000, J. M. Spivey.

A. The application/wsdl+xml Media Type
This appendix defines the "application/wsdl+xml" media type which can be used to describe WSDL 2.0
documents serialized as XML.

A.1 Registration

MIME media type name:

application

MIME subtype name:

wsdl+xml

Required parameters:

none

Optional parameters:
charset

This parameter has identical semantics to the charset parameter of the "application/xml" media
type as specified in [RFC 3023 [p.92]].

94

A. The application/wsdl+xml Media Type

http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/xlink/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/xml11
http://spivey.oriel.ox.ac.uk/~mike/zrm/index.html
http://spivey.oriel.ox.ac.uk/~mike/fuzz/

Encoding considerations:

Identical to those of "application/xml" as described in [RFC 3023 [p.92]], section 3.2, as applied to
the WSDL document Infoset.

Security considerations:

See section A.3 Security considerations [p.101] .

Interoperability considerations:

There are no known interoperability issues.

Published specifications:

This document and [WSDL 2.0 Adjuncts [p.92]].

Applications which use this media type:

No known applications currently use this media type.

Additional information:
File extension:

wsdl

Fragment identifiers:

Either a syntax identical to that of "application/xml" as described in [RFC 3023 [p.92]], section
5 or the syntax defined in A.2 Fragment Identifiers [p.96] .

Base URI:

As specified in [RFC 3023 [p.92]], section 6.

Macintosh File Type code:

WSDL

Person and email address to contact for further information:

World Wide Web Consortium <web-human@w3.org>

Intended usage:

COMMON

Author/Change controller:

95

A.1 Registration

The WSDL 2.0 specification set is a work product of the World Wide Web Consortium’s Web
Service Description Working Group. The W3C has change control over these specifications.

A.2 Fragment Identifiers

This section defines a fragment identifier syntax for identifying components of a WSDL 2.0 document.
This fragment identifier syntax is compliant with the [XPointer Framework [p.94]].

A WSDL 2.0 fragment identifier consists of zero or more xmlns pointer parts followed by a WSDL 2.0
pointer part as defined below. The pointer parts have a scheme name that corresponds to one of the stan-
dard WSDL 2.0 component types, and scheme data that is a path composed of names that identify the
components. The scheme names all begin with the prefix "wsdl." to avoid name conflicts with other
schemes. The names in the path are of type either QName, NCName, IRI, URI, or Pointer Part depending
on the context. The scheme data for extension components is defined by the corresponding extension spec-
ification.

For QNames, any prefix MUST be defined by a preceding xmlns pointer part. If a QName does not have a
prefix then its namespace name is the target namespace of the WSDL 2.0 document.

The fragment identifier is typically constructed from the {name [p.72] } property of the component and
the {name [p.72] } properties of its ancestors as a path according to Table A-1 [p.96] . The first column of
this table gives the name of the WSDL 2.0 component. Columns labeled 1 through 4 specify the identifiers
that uniquely identify the component within its context. Identifiers are typically formed from the {name
[p.72] } property, although in several cases references to other components are used. These identifiers are
then used to construct the pointer part in the last column.

Table A-1. Rules for determining pointer parts for WSDL 2.0 components

Component 1 2 3 4 Pointer Part

Description
[p.14]

n/a n/a n/a n/a wsdl.description [p.97] ()

Element
Declaration
[p.14]

element
QName

n/a n/a n/a
wsdl.elementDeclaration [p.98]
(element)

Element
Declaration
[p.14]

element
QName

system IRI n/a n/a
wsdl.elementDeclaration [p.98]
(element , system)

Type Defi-
nition [p.14]

type
QName

n/a n/a n/a wsdl.typeDefinition [p.98] (type)

Type Defi-
nition [p.14]

type
QName

system IRI n/a n/a
wsdl.typeDefinition [p.98]
(type , system)

Interface
[p.18]

interface
NCName

n/a n/a n/a wsdl.interface [p.98] (interface)

Interface
Fault [p.22]

interface
NCName

fault NCName n/a n/a
wsdl.interfaceFault [p.98] (inter-
face / fault)

96

A.2 Fragment Identifiers

http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/desc/

Interface
Operation
[p.26]

interface
NCName

operation NCName n/a n/a
wsdl.interfaceOperation [p.98]
(interface / operation)

Interface
Message
Reference
[p.32]

interface
NCName

operation NCName
message
NCName

n/a
wsdl.interfaceMessageReference
[p.99] (interface / opera-
tion / message)

Interface
Fault Refer-
ence [p.36]

interface
NCName

operation NCName
message
NCName

fault
QName

wsdl.interfaceFaultReference [p.99]
(interface / operation / message / fault)

Binding
[p.50]

binding
NCName

n/a n/a n/a wsdl.binding [p.99] (binding)

Binding
Fault [p.53]

binding
NCName

fault QName n/a n/a
wsdl.bindingFault [p.99]
(binding / fault)

Binding
Operation
[p.56]

binding
NCName

operation QName n/a n/a
wsdl.bindingOperation [p.99]
(binding / operation)

Binding
Message
Reference
[p.59]

binding
NCName

operation QName
message
NCName

n/a
wsdl.bindingMessageReference
[p.100] (binding / operation / message)

Binding
Fault Refer-
ence [p.62]

binding
NCName

operation QName
message
NCName

fault
QName

wsdl.bindingFaultReference [p.100]
(binding / operation / message / fault)

Service
[p.65]

service
NCName

n/a n/a n/a wsdl.service [p.100] (service)

Endpoint
[p.68]

service
NCName

endpoint NCName n/a n/a
wsdl.endpoint [p.100]
(service / endpoint)

Feature
[p.40]

parent
Pointer Part

feature IRI n/a n/a
wsdl.feature [p.101]
(parent / feature)

Property
[p.44]

parent
Pointer Part

property IRI n/a n/a
wsdl.property [p.101] (parent / prop-
erty)

Extensions
[p.13]

namespace
URI

identifier exten-
sion-specific-syntax

n/a n/a
wsdl.extension [p.101] (names-
pace , identifier)

Note that the above rules are defined in terms of component properties rather than the XML Infoset repre-
sentation of the component model. The following sections specify in detail how the pointer parts are
constructed from the component model.

A.2.1 The Description Component

wsdl.description()

97

A.2 Fragment Identifiers

A.2.2 The Element Declaration Component

wsdl.elementDeclaration(element)

wsdl.elementDeclaration(element , system)

1. element is the {name [p.14] } property of the Element Declaration [p.14] component.

2. system is the namespace absolute IRI of the extension type system used for the Element Declara-
tion [p.14] component (see 3.2 Using Other Schema Languages [p.78]). This parameter is absent if
XML Schema is the type system.

A.2.3 The Type Definition Component

wsdl.typeDefinition(type)

wsdl.typeDefinition(type , system)

1. type is the {name [p.14] } property of the Type Definition [p.14] component.

2. system is the namespace absolute IRI of the extension type system used for the Type Definition
[p.14] component (see 3.2 Using Other Schema Languages [p.78]). This parameter is absent if
XML Schema is the type system.

A.2.4 The Interface Component

wsdl.interface(interface)

1. interface is the local name of the {name [p.18] } property of the Interface [p.18] component.

A.2.5 The Interface Fault Component

wsdl.interfaceFault(interface / fault)

1. interface is the local name of the {name [p.18] } property of the parent Interface [p.18] compo-
nent.

2. fault is the local name of the {name [p.22] } property of the Interface Fault [p.22] component.

A.2.6 The Interface Operation Component

wsdl.interfaceOperation(interface / operation)

1. interface is the local name of the {name [p.18] } property of the parent Interface [p.18] compo-
nent.

2. operation is the local name of the {name [p.26] } property of the Interface Operation [p.26]
component.

98

A.2 Fragment Identifiers

A.2.7 The Interface Message Reference Component

wsdl.interfaceMessageReference(interface / operation / message)

1. interface is the local name of the {name [p.18] } property of the grandparent Interface [p.18]
component.

2. operation is the local name of the {name [p.26] } property of the parent Interface Operation
[p.26] component.

3. message is the {message label [p.32] } property of the Interface Message Reference [p.32] compo-
nent.

A.2.8 The Interface Fault Reference Component

wsdl.interfaceFaultReference(interface / operation / message / fault)

1. interface is the local name of the {name [p.18] } property of the grandparent Interface [p.18]
component.

2. operation is the local name of the {name [p.26] } property of the parent Interface Operation
[p.26] component.

3. message is the {message label [p.36] } property of the Interface Fault Reference [p.36] component.

4. fault is the {name [p.22] } property of the Interface Fault [p.22] component referred to by the
{interface fault [p.36] } property of the Interface Fault Reference [p.36] component.

A.2.9 The Binding Component

wsdl.binding(binding)

1. binding is the local name of the {name [p.50] } property of the Binding [p.50] component.

A.2.10 The Binding Fault Component

wsdl.bindingFault(binding / fault)

1. binding is the local name of the {name [p.50] } property of the parent Binding [p.50] component.

2. fault is the {name [p.22] } property of the Interface Fault [p.22] component referred to by the
{interface fault [p.54] } property of the Binding Fault [p.53] component.

A.2.11 The Binding Operation Component

wsdl.bindingOperation(binding / operation)

99

A.2 Fragment Identifiers

1. binding is the local name of the {name [p.50] } property of the parent Binding [p.50] component.

2. operation is the {name [p.26] } property of the Interface Operation [p.26] component referred to
by the {interface operation [p.56] } property of the Binding Operation [p.56] component.

A.2.12 The Binding Message Reference Component

wsdl.bindingMessageReference(binding / operation / message)

1. binding is the local name of the {name [p.50] } property of the grandparent Binding [p.50] compo-
nent.

2. operation is the {name [p.26] } property of the Interface Operation [p.26] component referred to
by the {interface operation [p.56] } property of the parent Binding Operation [p.56] component.

3. message is the {message label [p.32] } property of the Interface Message Reference [p.32] compo-
nent referred to by the {interface message reference [p.59] } property of the Binding Message Refer-
ence [p.59] component.

A.2.13 The Binding Fault Reference Component

wsdl.bindingFaultReference(binding / operation / message / fault)

1. binding is the local name of the {name [p.50] } property of the grandparent Binding [p.50] compo-
nent.

2. operation is the {name [p.26] } property of the Interface Operation [p.26] component referred to
by the {interface operation [p.56] } property of the parent Binding Operation [p.56] component.

3. message is the {message label [p.36] } property of the Interface Fault Reference [p.36] component
referred to by the {interface fault reference [p.62] } property of the Binding Fault Reference [p.62]
component.

4. fault is the {name [p.22] } property of the Interface Fault [p.22] component referred to by the
{interface fault [p.36] } property of the Interface Fault Reference [p.36] component referred to by the
{interface fault reference [p.62] } property of the Binding Fault Reference [p.62] component.

A.2.14 The Service Component

wsdl.service(service)

1. service is the local name of the {name [p.65] } property of the Service [p.65] component.

A.2.15 The Endpoint Component

wsdl.endpoint(service / endpoint)

100

A.2 Fragment Identifiers

1. service is the local name of the {name [p.65] } property of the parent Service [p.65] component.

2. endpoint is the {name [p.68] } property of the Endpoint [p.68] component.

A.2.16 The Feature Component

wsdl.feature(parent / feature)

1. parent is the pointer part of the parent component.

2. feature is the {ref [p.40] } property of the Feature [p.40] component.

A.2.17 The Property Component

wsdl.property(parent / property)

1. parent is the pointer part of the parent component.

2. property is the {ref [p.44] } property of the Property [p.44] component.

A.2.18 Extension Components

WSDL 2.0 is extensible and it is possible for an extension to define new components types. The XPointer
Framework scheme for extension components is:

wsdl.extension(namespace , identifier)

1. namespace is the namespace URI that identifies the extension, e.g. for the WSDL 2.0 SOAP 1.2
Binding the namespace is http://www.w3.org/2006/01/wsdl/soap.

2. identifier is defined by the extension using a syntax specific to the extension. The owner of the
extension must define any components contributed by the extension and a syntax for identifying
them.

A.3 Security considerations

This media type uses the "+xml" convention, it shares the same security considerations as described in
[RFC 3023 [p.92]], section 10.

B. Acknowledgements (Non-Normative)
This document is the work of the W3C Web Service Description Working Group.

Members of the Working Group are (at the time of writing, and by alphabetical order): Charlton Barreto
(Adobe Systems Inc.), Allen Brookes (Rogue Wave Softwave), Dave Chappell (Sonic Software), Helen
Chen (Agfa-Gevaert N. V.), Roberto Chinnici (Sun Microsystems), Kendall Clark (University of Mary-
land), Glen Daniels (Sonic Software), Paul Downey (British Telecommunications), Youenn Fablet
(Canon), Hugo Haas (W3C), Tom Jordahl (Macromedia), Anish Karmarkar (Oracle Corporation), Jacek

101

B. Acknowledgements (Non-Normative)

http://www.w3.org/2002/ws/desc/

Kopecky (DERI Innsbruck at the Leopold-Franzens-Universität Innsbruck, Austria), Amelia Lewis
(TIBCO Software, Inc.), Michael Liddy (Education.au Ltd.), Kevin Canyang Liu (SAP AG), Jonathan
Marsh (Microsoft Corporation), Josephine Micallef (SAIC - Telcordia Technologies), Jeff Mischkinsky
(Oracle Corporation), Dale Moberg (Cyclone Commerce), Jean-Jacques Moreau (Canon), Mark Notting-
ham (BEA Systems, Inc.), David Orchard (BEA Systems, Inc.), Vivek Pandey (Sun Microsystems), Bijan
Parsia (University of Maryland), Gilbert Pilz (BEA Systems, Inc.), Tony Rogers (Computer Associates),
Arthur Ryman (IBM), Adi Sakala (IONA Technologies), Asir Vedamuthu (Microsoft Corporation),
Sanjiva Weerawarana (WSO2), Ümit Yalçınalp (SAP AG).

Previous members were: Lily Liu (webMethods, Inc.), Don Wright (Lexmark), Joyce Yang (Oracle
Corporation), Daniel Schutzer (Citigroup), Dave Solo (Citigroup), Stefano Pogliani (Sun Microsystems),
William Stumbo (Xerox), Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler Research and
Technology), Tim Finin (University of Maryland), Laurent De Teneuille (L’Echangeur), Johan Pauhlsson
(L’Echangeur), Mark Jones (AT&T), Steve Lind (AT&T), Sandra Swearingen (U.S. Department of
Defense, U.S. Air Force), Philippe Le Hégaret (W3C), Jim Hendler (University of Maryland), Dietmar
Gaertner (Software AG), Michael Champion (Software AG), Don Mullen (TIBCO Software, Inc.), Steve
Graham (Global Grid Forum), Steve Tuecke (Global Grid Forum), Michael Mahan (Nokia), Bryan
Thompson (Hicks & Associates), Ingo Melzer (DaimlerChrysler Research and Technology), Sandeep
Kumar (Cisco Systems), Alan Davies (SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne (Elec-
tronic Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA Technologies), Mike McHugh
(W. W. Grainger), Michael Mealling (Verisign), Waqar Sadiq (Electronic Data Systems), Yaron Goland
(BEA Systems, Inc.), Ümit Yalçınalp (Oracle Corporation), Peter Madziak (Agfa-Gevaert N. V.),
Jeffrey Schlimmer (Microsoft Corporation), Hao He (The Thomson Corporation), Erik Ackerman
(Lexmark), Jerry Thrasher (Lexmark), Prasad Yendluri (webMethods, Inc.), William Vambenepe
(Hewlett-Packard Company), David Booth (W3C), Sanjiva Weerawarana (IBM), Charlton Barreto
(webMethods, Inc.), Asir Vedamuthu (webMethods, Inc.), Igor Sedukhin (Computer Associates), Martin
Gudgin (Microsoft Corporation), Rebecca Bergersen (IONA Technologies), Ugo Corda (SeeBeyond).

The people who have contributed to discussions on www-ws-desc@w3.org are also gratefully acknowl-
edged.

C. IRI-References for WSDL 2.0 Components (Non-Normative)
This appendix provides a syntax for IRI-references for all components found in a WSDL 2.0 document.
The IRI-references are easy to understand and compare, while imposing no burden on the WSDL 2.0
author.

C.1 WSDL 2.0 IRIs

There are two main cases for WSDL 2.0 IRIs:

the IRI of a WSDL 2.0 document

the IRI of a WSDL 2.0 namespace

102

C. IRI-References for WSDL 2.0 Components (Non-Normative)

http://lists.w3.org/Archives/Public/www-ws-desc/

The IRI of a WSDL 2.0 document can be dereferenced to give a resource representation that contributes
component definitions to a single WSDL 2.0 namespace. If the media type is set to the WSDL 2.0 media
type, then the fragment identifiers can be used to identify the main components that are defined in the
document.

However, in keeping with the recommendation in 2.1.1 The Description Component [p.13] that the
namespace URI be dereferencible to a WSDL 2.0 document, this appendix specifies the use of the names-
pace IRI with the WSDL 2.0 fragment identifiers to form an IRI-reference.

The IRI in an IRI-reference for a WSDL 2.0 component is the namespace name of the {name [p.72] }
property of either the component itself, in the case of Interface [p.18] , Binding [p.50] , and Service [p.65]
components, or the {name [p.72] } property of the ancestor top-level component. The IRI provided by the
namespace name of the {name [p.72] } property is combined with a fragment identifier as defined in A.2
Fragment Identifiers [p.96] .

C.2 Example

Consider the following WSDL 2.0 document located at http://example.org/TicketAgent.wsdl:

Example C-1. IRI-References - Example WSDL 2.0 Document

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:description
 targetNamespace="http://example.org/TicketAgent.wsdl20"
 xmlns:xsTicketAgent="http://example.org/TicketAgent.xsd"
 xmlns:wsdl="http://www.w3.org/2006/01/wsdl"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.w3.org/2006/01/wsdl http://www.w3.org/2006/01/wsdl/wsdl20.xsd">

 <wsdl:types>
 <xs:import schemaLocation="TicketAgent.xsd"
 namespace="http://example.org/TicketAgent.xsd" />
 </wsdl:types>

 <wsdl:interface name="TicketAgent">
 <feature ref="http://example.com/secure-channel"
 required="true"/>

 <wsdl:operation name="listFlights"
 pattern="http://www.w3.org/2006/01/wsdl/in-out">
 <wsdl:input element="xsTicketAgent:listFlightsRequest"/>
 <wsdl:output element="xsTicketAgent:listFlightsResponse"/>
 </wsdl:operation>

 <wsdl:operation name="reserveFlight"
 pattern="http://www.w3.org/2006/01/wsdl/in-out">
 <wsdl:input element="xsTicketAgent:reserveFlightRequest"/>
 <wsdl:output element="xsTicketAgent:reserveFlightResponse"/>
 </wsdl:operation>
 </wsdl:interface>
</wsdl:description>

103

C.2 Example

Its components have the following IRI-references:

Example C-2. IRI-References - Example IRIs

http://example.org/TicketAgent.wsdl20#
 wsdl.description()

http://example.org/TicketAgent.wsdl20#
 xmlns(xsTicketAgent=http://example.org/TicketAgent.xsd)
 wsdl.elementDeclaration(xsTicketAgent:listFlightsRequest)

http://example.org/TicketAgent.wsdl20#
 xmlns(xsTicketAgent=http://example.org/TicketAgent.xsd)
 wsdl.elementDeclaration(xsTicketAgent:listFlightsResponse)

http://example.org/TicketAgent.wsdl20#
 xmlns(xsTicketAgent=http://example.org/TicketAgent.xsd)
 wsdl.elementDeclaration(xsTicketAgent:reserveFlightRequest)

http://example.org/TicketAgent.wsdl20#
 xmlns(xsTicketAgent=http://example.org/TicketAgent.xsd)
 wsdl.elementDeclaration(xsTicketAgent:reserveFlightResponse)

http://example.org/TicketAgent.wsdl20#
 wsdl.interface(TicketAgent)

http://example.org/TicketAgent.wsdl20#
 wsdl.feature(
 wsdl.interface(TicketAgent)/http://example.com/secure-channel)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceOperation(TicketAgent/listFlights)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceMessageReference(TicketAgent/listFlights/In)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceMessageReference(TicketAgent/listFlights/Out)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceOperation(TicketAgent/reserveFlight)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceMessageReference(TicketAgent/reserveFlight/In)

http://example.org/TicketAgent.wsdl20#
 wsdl.interfaceMessageReference(TicketAgent/reserveFlight/Out)

D. Component Summary (Non-Normative)
Table D-1 [p.105] lists all the components in the WSDL 2.0 abstract Component Model, and all their
properties.

104

D. Component Summary (Non-Normative)

Table D-1. Summary of WSDL 2.0 Components and their Properties

Component Defined Properties

- {features [p.40] }, {name [p.72] }, {parent [p.14] }, {properties [p.45] }

Binding [p.50]
{binding faults [p.50] }, {binding operations [p.50] }, {features [p.50] }, {interface
[p.50] }, {name [p.50] }, {properties [p.50] }, {type [p.50] }

Binding Fault
[p.53]

{interface fault [p.54] }, {features [p.54] }, {parent [p.54] }, {properties [p.54] }

Binding Fault
Reference [p.62]

{features [p.62] }, {interface fault reference [p.62] }, {parent [p.62] }, {properties
[p.62] }

Binding Message
Reference [p.59]

{features [p.59] }, {interface message reference [p.59] }, {parent [p.59] }, {proper-
ties [p.59] }

Binding Operation
[p.56]

{binding fault references [p.56] }, {binding message references [p.56] }, {interface
operation [p.56] }, {features [p.56] }, {parent [p.56] }, {properties [p.56] }

Description [p.14]
{bindings [p.14] }, {element declarations [p.14] }, {interfaces [p.14] }, {services
[p.14] }, {type definitions [p.14] }

Element Declara-
tion [p.14]

{name [p.14] }, {system [p.14] }

Endpoint [p.68]
{address [p.68] }, {binding [p.68] }, {features [p.68] }, {name [p.68] }, {parent
[p.68] }, {properties [p.68] }

Feature [p.40] {parent [p.40] }, {ref [p.40] }, {required [p.40] }

Interface [p.18]
{extended interfaces [p.18] }, {features [p.18] }, {interface faults [p.18] }, {inter-
face operations [p.18] }, {name [p.18] }, {properties [p.18] }

Interface Fault
[p.22]

{element declaration [p.22] }, {features [p.22] }, {name [p.22] }, {parent [p.22] },
{properties [p.22] }

Interface Fault
Reference [p.36]

{direction [p.36] }, {features [p.36] }, {interface fault [p.36] }, {message label
[p.36] }, {parent [p.36] }, {properties [p.36] }

Interface Message
Reference [p.32]

{direction [p.32] }, {element declaration [p.32] }, {features [p.32] }, {message
content model [p.32] }, {message label [p.32] }, {parent [p.32] }, {properties
[p.32] }

Interface Operation
[p.26]

{features [p.26] }, {interface fault references [p.26] }, {interface message refer-
ences [p.26] }, {message exchange pattern [p.26] }, {name [p.26] }, {parent [p.26]
}, {properties [p.26] }, {style [p.26] }

Property [p.44] {parent [p.45] }, {ref [p.44] }, {value [p.45] }, {value constraint [p.44] }

105

D. Component Summary (Non-Normative)

Service [p.65]
{endpoints [p.65] }, {features [p.65] }, {interface [p.65] }, {name [p.65] }, {prop-
erties [p.65] }

Type Definition
[p.14]

{name [p.14] }, {system [p.14] }

Property Where Defined

address Endpoint.{address [p.68] }

binding Endpoint.{binding [p.68] }

binding faults Binding.{binding faults [p.50] }

binding operations Binding.{binding operations [p.50] }

bindings Description.{bindings [p.14] }

direction
Interface Fault Reference.{direction [p.36] }, Interface Message Reference.{direc-
tion [p.32] }

element declara-
tion

Interface Fault.{element declaration [p.22] }, Interface Message Refer-
ence.{element declaration [p.32] }

element declara-
tions

Description.{element declarations [p.14] }

endpoints Service.{endpoints [p.65] }

extended interfaces Interface.{extended interfaces [p.18] }

features

.{features [p.40] }, Binding.{features [p.50] }, Binding Fault.{features [p.54] },
Binding Fault Reference.{features [p.62] }, Binding Message Reference.{features
[p.59] }, Binding Operation.{features [p.56] }, Endpoint.{features [p.68] }, Inter-
face.{features [p.18] }, Interface Fault.{features [p.22] }, Interface Fault Refer-
ence.{features [p.36] }, Interface Message Reference.{features [p.32] }, Interface
Operation.{features [p.26] }, Service.{features [p.65] }

interface Binding.{interface [p.50] }, Service.{interface [p.65] }

interface fault
Binding Fault.{interface fault [p.54] }, Interface Fault Reference.{interface fault
[p.36] }

interface fault
references

Interface Operation.{interface fault references [p.26] }

interface faults Interface.{interface faults [p.18] }

interface message
references

Interface Operation.{interface message references [p.26] }

interface opera-
tions

Interface.{interface operations [p.18] }

106

D. Component Summary (Non-Normative)

interfaces Description.{interfaces [p.14] }

message content
model

Interface Message Reference.{message content model [p.32] }

message exchange
pattern

Interface Operation.{message exchange pattern [p.26] }

message label
Interface Fault Reference.{message label [p.36] }, Interface Message Refer-
ence.{message label [p.32] }

name

.{name [p.72] }, Binding.{name [p.50] }, Element Declaration.{name [p.14] },
Endpoint.{name [p.68] }, Interface.{name [p.18] }, Interface Fault.{name [p.22] },
Interface Operation.{name [p.26] }, Service.{name [p.65] }, Type Defini-
tion.{name [p.14] }

parent

.{parent [p.14] }, Binding Fault.{parent [p.54] }, Binding Fault Reference.{parent
[p.62] }, Binding Message Reference.{parent [p.59] }, Binding Operation.{parent
[p.56] }, Endpoint.{parent [p.68] }, Feature.{parent [p.40] }, Interface
Fault.{parent [p.22] }, Interface Fault Reference.{parent [p.36] }, Interface
Message Reference.{parent [p.32] }, Interface Operation.{parent [p.26] }, Prop-
erty.{parent [p.45] }

properties

.{properties [p.45] }, Binding.{properties [p.50] }, Binding Fault.{properties [p.54]
}, Binding Fault Reference.{properties [p.62] }, Binding Message Refer-
ence.{properties [p.59] }, Binding Operation.{properties [p.56] }, Endpoint.{prop-
erties [p.68] }, Interface.{properties [p.18] }, Interface Fault.{properties [p.22] },
Interface Fault Reference.{properties [p.36] }, Interface Message Reference.{prop-
erties [p.32] }, Interface Operation.{properties [p.26] }, Service.{properties [p.65]
}

ref Feature.{ref [p.40] }, Property.{ref [p.44] }

required Feature.{required [p.40] }

services Description.{services [p.14] }

style Interface Operation.{style [p.26] }

system Element Declaration.{system [p.14] }, Type Definition.{system [p.14] }

type Binding.{type [p.50] }

type definitions Description.{type definitions [p.14] }

value Property.{value [p.45] }

value constraint Property.{value constraint [p.44] }

107

D. Component Summary (Non-Normative)

E. Part 1 Change Log (Non-Normative)

E.1 WSDL 2.0 Specification Changes

Table E-1. Summary of WSDL 2.0 Specification Changes

Date Author Description

20051121 AGR
Added assertions posted to mailing list: "types, description, interface, feature, and
property assertions", Lawrence Mandel, 2005-11-17.

20051118 AGR
Added assertions posted to mailing list: "types assertions", Lawrence Mandel,
2005-11-15.

20051118 AGR Simiplified Z Notation for fragment identifiers and updated Example IRIs [p.104] .

20051117 AGR
LC344 : Reviewed use of "Note that" throughout and removed usages where they
would be incorrectly interpreted as non-normative. Implemented resolutions of #1,
#2, #6, #10, and #14.

20051117 AGR
Fixed typos posted to mailing list: WSDL 2.0 spec typos, Lawrence Mandel,
2005-11-16.

20051117 JJM LC358 : fixed formatting in example C.2.

20051117 JJM LC356 : fixed contradiction between sections 2.1.2 and 2.2.1.

20051117 JJM LC302 : point to RFC3987 instead of the draft TAG finding.

20051117 JJM LC355 : fixed section 2.10.3, table had error, "interface fault component".

20051116 AGR
Added Z Notation for fragment identifiers and component designators for Descrip-
tion, Feature, Property, and Extension components in Appendix A - Fragment Iden-
tifiers [p.96] .

20051115 AGR
Added Z Notation for fragment identifiers and component designators for Element
Declaration and Type Definition components in Appendix A - Fragment Identifiers
[p.96] .

20051113 AGR
Added Z Notation for fragment identifiers and component designators for Inter-
face, Binding, and Service component families in Appendix A - Fragment Identi-
fiers [p.96] .

20051112 AGR
Corrected order of arguments in fragment identifier for Binding Fault Reference
[p.100] to match that in Interface Fault Reference.

20051112 AGR LC361 : Defined what should be declared as a fault [p.21] .

20051112 AGR
LC344#5 : Allow an operation style to constrain faults [p.28] as per the resolution
at the Yokohama F2F.

108

E. Part 1 Change Log (Non-Normative)

http://lists.w3.org/Archives/Public/www-ws-desc/2005Nov/0053.html
http://lists.w3.org/Archives/Public/www-ws-desc/2005Nov/0053.html
http://lists.w3.org/Archives/Public/www-ws-desc/2005Nov/0037.html
http://lists.w3.org/Archives/Public/www-ws-desc/2005Nov/0037.html
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC344
http://lists.w3.org/Archives/Public/www-ws-desc/2005Nov/0044.html
http://lists.w3.org/Archives/Public/www-ws-desc/2005Nov/0044.html
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC358
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC356
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC302
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC355
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC361
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC344

20051112 AGR LC350 : Corrected Introduction [p.7] .

20051112 AGR
LC336 : Soften statement about use of xs:anyURI and refer to WS-Addressing
Endpoint Reference [p.79] .

20051112 AGR
LC305 : Aligned BNF notational conventions with WS-Addressing, Pseudo
schemas do not include extensibility points for brevity [p.12] .

20051110 AGR LC353 : Added definition of a valid WSDL 2.0 component model [p.12] .

20051110 JJM LC360 : What should be declared as a fault, as per Tokyo f2f.

20051110 JJM LC357 : Added anyURI-IRI warning, as per Tokyo f2f.

20051110 JJM
LC344#5 : Incorporated text regarding mutually exclusive operation styles, as per
Tokyo f2f.

20051103 AGR
LC344#12 : Completed editorial improvements to message label rules. Moved long
definitions out of tables.

20051101 AGR

Added Z Notation for message exchange pattern, placeholder message, and fault
propagation ruleset in 2.4.1.1 Message Exchange Pattern [p.27] . Replaced the
term fault pattern with fault propagation ruleset throughout for consistency and
agreement with Part 2.

20051027 AGR
Added bidirectional linking between assertions and the summary table, and added a
section on notation, 1.4.10 Assertions [p.12] .

20051027 AGR
Updated 3.1 Using W3C XML Schema Description Language [p.74] as per
proposal How to Treat Built-In Schema Types.

20051027 AGR
LC344#12 : Editorial improvements to message label rules. Added precise defini-
tions of message exchange pattern, placeholder message, and fault propagation
ruleset in 2.4.1.1 Message Exchange Pattern [p.27] .

20051020 AGR LC344#6 : Editorial improvements to 2.7.1 The Feature Component [p.39] .

20051016 AGR
LC328 : Added introductory paragraph to 8. Conformance [p.88] in response to
comment #2.

20050924 AGR Added initial markup for assertions.

20050914 AGR
LC311: Clarified that the URI associated with alternative schema languages for
defining other type systems is the namespace used for its extension elements and
attributes and that it is an absolute IRI.

20050914 AGR
LC309: Replaced the list of operation style definitions with a general reference to
Part 2.

20050914 AGR
LC308: Added references to Fragment Identifier appendix to show how Interface
Fault and Interface Operation can be uniquely identified.

109

E.1 WSDL 2.0 Specification Changes

http://www.w3.org/2002/ws/desc/5/lc-issues/#LC350
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC336
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC305
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC353
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC360
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC357
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC344
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC344
http://lists.w3.org/Archives/Public/www-ws-desc/2005Oct/0027.html
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC344
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC344
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC328
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC311
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC309
http://www.w3.org/2002/ws/desc/5/lc-issues/#LC308

20050901 RRC
LC310: Removed uses of undefined "ws:" prefix and made use of prefixes in
section 4.2 more regular.

20050730 AGR Removed obsolete editorial notes.

20050727 AGR
LC96 : Added clarification to section 4.2 stating that imported WSDL components
are pervasive like in XML Schema as per resolution agreed to at F2F.

20050727 AGR
LC91 : Added clarification to section 3.1.1 stating that some differences to
xs:import apply as per resolution agreed to at F2F.

20050727 AGR
Corrected typo in section 3.1.2 on inlining two or more schemas that have the same
namespace.

20050719 AGR Added xs:import and xs:schema to XML Syntax Summary for types.

20050711 AGR Updated Example C-2. IRI-References - Example IRIs to match Appendix A.

20050616 AGR
Corrected Feature and Property composition rules for Interface, Service, and
Endpoint.

20050615 AGR
LC117: Removed Service References and Endpoint References and added
wsdlx:interface and wsdlx:binding.

20050613 RRC
LC74c: changed wsdl:documentation element cardinality to zero or more
and adding sentence on use of xml:lang .

20050613 RRC LC74a: changed URIs to IRIs except in Feature and Property Components.

20050613 AGR LC75v: Removed any text that discussed conformance for WSDL 2.0 processors.

20050613 JJM LC131: added pseudo-schema comment.

20050613 JJM
LC70: reiterated behavior is undefined when several schema languages used simul-
taneously.

20050613 JJM LC70: moved appendix D (other schema languages) to a separate specification.

20050612 AGR
Finshed first pass at adding markup for WSDL component and property definitions
and references.

20050610 AGR Added table of components and their properties, courtesy of JM.

20050608 AGR Added markup for WSDL component and property definitions and references.

20050602 HH LC75c: moved safety to Part 2.

20050601 JJM LC75x: removed appendix "migrating from WSDL 1.1 to WSDL 2.0".

20050531 JJM LC82: removed ONMR section (transfer to primer).

20050531 JJM LC71: added default value for pattern attribute (".../inout").

110

E.1 WSDL 2.0 Specification Changes

http://www.w3.org/2002/ws/desc/5/lc-issues/#LC310
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC96
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC91
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC117
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC74c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC74a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75v
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC131
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC70
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC70
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75x
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC82
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC71

20050526 AGR
LC64: Added fragment identifiers for Description [p.14] , Element Declaration
[p.14] , and Type Definition [p.14] components.

20050525 AGR Added final ComponentModel to Z Notation.

20050523 AGR Reordered some paragraphs to improve consistency.

20050522 AGR Added consistency and key constraints to the Z notation.

20050520 JJM LC129: wsdlLocation can now also point to WSDL 1.1 documents.

20050520 JJM LC126: Added default value for wsdl:required (false).

20050520 JJM Fixed typo in 2.14.1.1.

20050519 JJM LC97: Uniformized setting default values. Fixed typos along the way.

20050518 AGR Added parent and integrity constraints to the Z notation.

20050513 JJM LC18: Fixed the SOAP 1.2/WSDL 2.0 feature text. Wordsmithed the introduction.

20050513 JJM LC127: Fixed wsld:include description, which is not about merging.

20050512 JJM LC75o: Remove "if any" from Service/{endpoints}, since there is always one.

20050511 AGR
LC121: Distinguished between wsdl:import and xs:import, and wsdl:include and
xs:include in Description [p.14] component mapping table.

20050504 JJM
Rewrote the "Operation Name Mapping Requirement" section to make it best prac-
tice.

20050504 JJM Removed empty subsections in "XML Schema 1.0 Simple..."

20050504 JJM Rewrote the "Single Interface" section, as per editorial AI dated 2005-01-19.

20050503 JJM Rewrote the ONMR as Best practice.

20050503 JJM LC112: Implemented resolution for issue LC112.

20050503 JJM Completed editorial action LC78.

20050501 AGR
LC120: Clarified description of include and import, removed contradictions, and
added references to QName resolution.

20050501 AGR
LC116: Clarified that schemaLocation is not required if the namespace has
been resolved in the component model. Replaced the term "embedded schema"
with "inlined schema" throughout.

20050501 AGR LC89m: Made all top-level components behave the same under include and import.

20050501 AGR LC89f: Added statement on XML document conformance.

20050501 AGR
LC74: Refer to WSDL 2.0 explicitly throughout. In particular, only imports and
includes of WSDL 2.0 documents are allowed.

111

E.1 WSDL 2.0 Specification Changes

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC64
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC129
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC126
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC97
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC18
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC127
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75o
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC121
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC112
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC120
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC116
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC89m
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC89f
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC74

20050501 AGR
LC99: Added #other to {message content model} property of Interface Message
Reference [p.32] component, and to WSDL schema.

20050501 AGR
LC125: Renamed components Fault Reference -> Interface Fault Reference [p.36] ,
Message Reference -> Interface Message Reference [p.32] , and the corresponding
properties.

20050430 AGR LC117: Added use of EndpointType for endpoint references.

20050429 AV LC96 and LC120: Modified section 4.2 to align wsdl:import with xs:import.

20050429 RRC
LC75w: Removed "is not dereferenceable or" from section 4.1.1 and removed
references to a WSDL processor.

20050429 RRC
Added clarification that an operation style MAY affect only input or only output
messages (or any other combination).

20050421 AGR
LC81 : Added constraints to ensure the component model can be serialized as a
WSDL 2.0 XML Infoset. In the Interface component, the declared Interface Faults
and Operations MUST have the same namespace as the Interface.

20050418 RRC LC115: Moved document conformance section after 1.1.

20050418 RRC
LC89g: Replaced incorrect references to the [owner] Infoset property with the
correct [owner element].

20050417 AGR

LC107 : Use a consistent naming convention for properties that refer to compo-
nents. Make the property name match the component name as follows:

Interface.{faults} -> {interface faults}

Interface.{operations} -> {interface operations}

InterfaceFault.{element} -> {element declaration}

MessageReference.{element} -> {element declaration}

FaultReference.{fault reference} -> {interface fault}

Binding.{faults} -> {binding faults}

Binding.{operations} -> {binding operations}

BindingFault.{fault reference} -> {interface fault}

BindingOperation.{operation reference} -> {interface operation}

BindingOperation.{message references} -> {binding message references}

BindingOperation.{fault references} ->{binding fault references}

112

E.1 WSDL 2.0 Specification Changes

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC99
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC125
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC117
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC96
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC120
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75w
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC81
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC115
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC89g
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC107

20050417 AGR
LC34b : Added the constraint that the {uri} property of a Feature or Property
[p.44] component within a {features} or {properties} property MUST be unique.

20050416 AGR LC105 : Added {parent} property to nested components.

20050416 AGR
Moved the fragment identifier [p.96] definition into the media registration
appendix.

20050414 JJM Fixed XML Schema P1/P2 version listed in the bibliography section.

20050413 AGR
LC87 : Improved clarity of the decription of Component Designators in Appendix
C.

20050407 JJM Reworded the introduction for wsdlLocation, as per LC26 resolution.

20050407 JJM Moved paragraphs 6-9 of section 2.1.1 into 2.1.2.

20050331 AGR

LC113 : In the Feature and Property Composition sections, the in-scope compo-
nents for Binding Operation, Binding Fault, Binding Message Reference, and
Binding Fault Reference should include those of the corresponding Interface Oper-
ation, Interface Fault, Message Reference, and Fault Reference, respectively. Also
updated specification references use Part 2: Adjuncts, and corrected validation
errors.

20050320 AGR
LC104: The operations, faults, features, and properties of an Interface [p.18]
component are those defined directly on the component and do not include those
from the extended interfaces.

20050320 AGR Rename Z Notation versions as wsdl20-z.html and wsdl20-z-ie-html.

20050315 AGR Hide Z Notation in the Normative version of the spec.

20050314 AGR Removed section on RPC Style so it can be included in Adjuncts.

20050310 AGR
Fixed minor Binding Operation errors introduced by addition of Binding Message
Reference.

20050310 JJM Replaced schema visibility table with Asir’s revised version.

20050309 AGR
Fixed minor Z typechecking errors introduced by addition of Binding Message
Reference. Kudos to RRC for updating the Z Notation!

20050301 RRC
LC55: added Binding Fault Reference [p.62] component and updated the definition
of the Binding Message Reference [p.59] component to be in sync with it, per issue
resolution.

20050301 RRC
LC51: added Fault Reference component to the feature composition section; added
mapping of {type definitions} property of the Description [p.14] component from
the XML representation.

20050301 RRC LC48a, LC49: implemented resolutions.

113

E.1 WSDL 2.0 Specification Changes

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC34b
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC105
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC87
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC113
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC104
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC55
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC51
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC48a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC49

20050228 JJM X and Y: Added note clarifying extensibility semantics.

20050228 JJM X: Added note clarifying extensibility semantics.

20050228 JJM X: Added text on the meaning of a service description.

20050218 RRC
Replaced "provider agent" with "Web service" and "requester agent" with "client"
(resolution of LC30).

20050218 RRC
Moved section on the operation name mapping requirement to section 2.13 (resolu-
tion of LC8).

20050218 RRC Implemented resolution of LC5h.

20050220 AGR
Refactored Feature and Property Z Notation in preparation for formalization of
composition model.

20050220 AGR

LC27: Partial Resolution from 2005-01-19: value sets intersect. Resolve Property
Composition Edge Cases by requiring the conjunction of all constraints to apply.
The composed value of a Property is intersection of the value set of each in-scope
Property.

20050220 AGR

LC20: Partial Resolution from 2005-01-19: "true" trumps. Resolve Feature
Composition Edge Cases by requiring the conjunction of all constraints to apply.
The composed value of a Feature is "true" if and only if at least one in-scope value
of the Feature is "true".

20050220 AGR
LC75i: At least one of the [children] of an Operation MUST be an "input" or
"output". Agree to remove "infault" and "outfault" from the list since it does not
make sense to have an Operation with only faults.

20050220 AGR
Completed Action Item - 2005-02-10: DBooth to mail Arthur change to wording
on media type registration, Arthur to incorporate.

20050217 JJM LC75s: Add table indicating the visibility of schema components.

20050217 JJM
LC52a: Indicate included components also belong to the same target namespace, as
per Jacek original suggestion.

20050216 JJM LC60: Indicate it is OK to embed 2 schemas from the same targetNS.

20050216 JJM LC75t: Remove the restriction that wsdl:include cannot be transitive.

20050216 JJM
LC91: Fixed wording regarding importing schema and effect on WSDL compo-
nents.

20050211 AGR
email: Added an informative reference to WS-Addressing and referred to it from
the Operation Name Mapping Requirement.

20050210 AGR email: Corrected WSDL Media Type Registration as per David Booth’s email.

114

E.1 WSDL 2.0 Specification Changes

http://lists.w3.org/Archives/Public/www-ws-desc/2005Feb/0006.html
http://lists.w3.org/Archives/Public/www-ws-desc/2004Dec/0022.html
http://lists.w3.org/Archives/Public/www-ws-desc/2005Feb/0006.html
http://lists.w3.org/Archives/Public/www-ws-desc/2005Jan/0026.html
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC27
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC20
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75i
http://www.w3.org/2002/ws/desc/4/lc-issues/#LC75s
http://www.w3.org/2002/ws/desc/4/lc-issues/#LC52a
http://www.w3.org/2002/ws/desc/4/lc-issues/#LC60
http://www.w3.org/2002/ws/desc/4/lc-issues/#LC75t
http://www.w3.org/2002/ws/desc/4/lc-issues/#LC91
http://lists.w3.org/Archives/Public/www-ws-desc/2005Feb/0026.html
http://lists.w3.org/Archives/Public/www-ws-desc/2005Feb/0016.html

20050209 AGR
Editorial: Combine {name} NCName and {target namespace} URI properties into
a single {name} QName property.

20050121 AGR
LC75l LC103: Make {message label} property of Binding Message Reference
[p.59] component REQUIRED and fix up XML mapping table. />.

20050121 AGR
LC75 LC89b LC89c: Drop support for XML 1.1, drop wsdls types, and use XSD
1.0 types. />.

20050120 AGR LC73 LC75n: Added "single_interface_per_service".

20050119 AGR Editorial improvements to Z Notation. Added referential integrity constraints.

20050118 AGR
Edited Notational Conventions and References sections. Added character entity
references for accented characters.

20050117 AGR Edited table markup to simplify PDF generation.

20041231 AGR Added reference to non-normative IE version of the specification.

20041227 AGR Added reference to non-normative DHTML version of the specification.

20041218 AGR
LC34a: Refer to "Appendix C - URI References for WSDL Components" when-
ever a component cannot be referred to by QName .

20041126 AGR LC43: Rename <definitions> to <description>.

20041102 HH LC38: Using real URI for DTD import

20041024 AGR Added initial Z Notation for component model.

20040930 AGR LC6d: Revised Appendix C, URI References.

20040929 AGR LC34b, LC34c, LC34d: Revised Appendix C, URI References.

20040802 RRC
Removed paragraph added per resolution of issue 211 (undone per action item 5 of
the 2004-07-29 concall).

20040802 RRC Added clarification on the meaning of required language extensions.

20040802 RRC Added operation name requirement to the Interface [p.18] component section.

20040802 RRC
Added introductory text for the Property Component (per action item 2 of the
2004-07-29 concall).

20040727 RRC Made the Property [p.44] component independent of XML Schema (issue 248).

20040727 SW Issue 243 text

20040727 SW Incorporated Paul’s words for issue 235

20040727 SW Added MarkN’s text for issue 211

115

E.1 WSDL 2.0 Specification Changes

http://lists.w3.org/Archives/Public/www-ws-desc/2004Aug/0017.html
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75l
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC103
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC89b
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC89c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC73
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75n
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC34a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC43
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC38
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC6d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC34b
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC34c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC34d

20040727 SW
Added note to processor conf rules for optional extensions and features about what
optional means.

20040727 SW
Removed contentious area ed note thing per decision to do those via minority opin-
ions.

20040722 HH Defined wsdls:int for http:code.

20040721 RRC
Made almost all set-valued properties optional and added a rule to default them to
the empty set, per agenda item 7 of 2004-07-15 concall.

20040715 RRC
Marked the {message label} property of the Message Reference and Fault Refer-
ence components as required.

20040715 RRC Made the {style} property into a set of xs:anyURI.

20040714 RRC Added definition of simple types used by the component model (issue 177).

20040713 RRC Added clarification to interface extensions per issue 220.

20040713 RRC Added clarification to Binding Operation section (issue 227).

20040713 RRC
Fixed references to Interface Fault [p.22] components in the Fault Reference
component section.

20040713 RRC Added description of pseudo-schema syntax.

20040714 SW Made f&p allowed in the remaining places and updated composition rules

20040713 SW Added negative conformance criteria: not required to process XML1.1 etc.

20040713 SW Corrected reference to frag ID syntax to for issue 209

20040713 SW Implemented Jonathan’s proposal for issue 160.

20040713 SW Put ednote in contentious areas asking for extra feedback.

20040712 RRC
Marked all component model properties as REQUIRED or OPTIONAL (issue
213).

20040712 RRC Added definition for equivalence of list-typed values.

20040712 RRC Clarified RPC style rules for one-way operations (issue 215).

20040708 JJM Finished adding clarifications for non-XML type system extensibility.

20040708 JJM Include the definition of "actual value" from XML Schema (Issue 219).

20040708 JJM Added resolution to issue 218 (2004Jun/0276.html, including Mark’s amendment).

20040708 JJM
Component equivalence (2004Jun/0195.html, 2004Jun/0199.html and ref to the
charmod [Issue 210]).

20040706 RRC Added clarifications for non-XML type system extensibility.

116

E.1 WSDL 2.0 Specification Changes

20040706 RRC Expanded component model definition.

20040706 RRC Added clarification to section 2.1.1 per resolution of issue 222.

20040706 RRC Made it possible to use rpc style with schema languages other than XML Schema.

20040702 SW Made operation/@style be a list of URIs.

20040702 SW Had forgotten to map to the {type} property of binding.

20040625 SW Allowed F&P *nearly* everywhere. Sigh.

20040618 SW Changed F&P composition model to nearest enclosing scope.

20040618 SW Incorporated Jacek’s purpose of bindings text as appropriate.

20040526 SW Added @address to /definitions/service/endpoint per F2F decision

20040526 SW Added @type to /definitions/binding per F2F decision

20040519 SW Renamed wsoap12: to wsoap:.

20040323 JJM Commented out the (missing) property example.

20040322 RRC Added definition of wsdli:wsdlLocation attribute.

20040322 JJM Added faults to properties and features.

20040319 JJM Use lowercase "should" in notes.

20040319 JJM
Comment out features at service level. Uniformize scope between features and
properties.

20040318 JJM Moved normative notes into the main body of the document.

20040318 JJM Incorporated the property text from Glen.

20040318 JJM Addressed comments from Yuxiao Zhao.

20040318 JJM Updated the feature description, as per Glen and David Booth’s suggestions.

20040317 RRC Removed redundant {styleDefault} property of the interface component.

20040317 JJM Include comments from Kevin.

20040315 RRC Added clarification on embedded XML schemas that refer to siblings.

20040315 RRC Updated RPC signature extension to use #in/#out/#inout/#return tokens.

20040315 RRC
Added explanatory text to types and modularization sections per resolution of issue
#102.

20040315 SW Change binding/{fault,operation}/@name to @ref

20040312 RRC Fixed appendix D to take the removal of wsdl:message into account.

117

E.1 WSDL 2.0 Specification Changes

20040312 RRC Added definition of wrpc:signature extension attribute.

20040311 SW Change fault stuff per decision to make faults first class in interfaces.

20040308 SW Renamed {message} property to {element} and @message to @element

20040305 SW Added {safety} property

20040227 MJG Merged in branch Issue143 containing resolution of issue 143

20040227 SW
Dropped {type definitions} property from definitions; leftover from <message>
days.

20040226 SW Working thru various edtodo items.

20040106 JS Per 18 Dec 2003 telecon decision, added text re: circular includes.

20031204 JS
Per 4 Dec 2003 telecon decision, removed redundant binding/operation/{infault,
outfault}/@messageReference.

20031105 JS
Added point to attributes task force recommendation accepted by the working
group.

20031104 JS

Mapping to component model for {message} of Fault Reference component indi-
cated that message attribute information item was optional, but the pseudo syntax
and XML representation indicated it was required. Made uniformly optional to
allow other type systems as was previously done for {message} of Message Refer-
ence component.

20031104 JS
Renamed interface /operation /{input,output} /@body to ./@message and interface
/operation /{infault,outfault} /@details to ./@message per 4 Nov face-to-face deci-
sion.

20031104 JS
Made interface /operation /{input,output,infault,outfault} /@messageReference
optional per 4 Nov face-to-face decision.

20031104 JS
Removed interface/operation/{input,output}/@header per 4 Nov face-to-face deci-
sion.

20031102 SW
Updated fault reference components to indicate that if operation’s MEP uses MTF
then the fault is in the opposite direction as the referenced message and if it use
FRM then its in the same direction. Per 10/30 telecon decision.

20031102 SW
Updated operation styles terminology per message #57 of Oct. and the RPC style
rules per message #58 of Oct. per decision on 10/30 telecon to consider those status
quo.

20031102 SW
Clarified wording in operation styles discussion to better explain the use of the
{style} attribute.

20031102 SW
Clarified wording in XML <-> component model mapping section for message
reference components to say that {body} and {headers} may not have a value.

118

E.1 WSDL 2.0 Specification Changes

20031102 SW
Made interface/operation/(input|output)/@messageReference REQUIRED per
10/30 telecon decision.

20031028 SW Renamed to wsdl20.xml and updated contents.

20031028 SW Updated bindings.

20031025 SW Updated faults.

20031013 JJM
Moved appendix C to a separate document, as per 24 Sep 2003 meeting in Palo
Alto, CA.

20031003 SW Softened <documentation> wording to allow machine processable documentation.

20031002 SW Changed binding/operation/@name to QName per edtodo.

20030930 SW Added placeholders for set-attr/get-attr operation styles.

20030929 SW Inserted Glen Daniels’ feature text.

20030919 RRC
Removed import facility for chameleon schemas and added a description of a
workaround.

20030918 JJM
Changed message pattern to message exchange pattern, as per WG resolution on 18
Sep. 2003

20030916 RRC Added editorial note for the missing RPC encoding style.

20030915 RRC
Yet more updates for REQUIRED, OPTIONAL; updated section 3 to reflect the
removal of "wsdl:message".

20030911 RRC
More updates for REQUIRED, OPTIONAL; removed diff markup; fixed example
C.4.

20030911 RRC
Renamed message reference "name" attribute and property to "messageReference";
fixed incorrect reference to "fault" element in the binding operation section.

20030910 SW
Fixed message references and added proper use of REQUIRED etc. for the part
I’ve gone through so far.

20030910 SW Updating spec; fixed up interface operation component more.

20030808 JCS Fixed errors found by IBM\Arthur.

20030804 JCS Removed Message component per 30 July-1 Aug meeting.

20030803 JCS
Replaced substitution groups with xs:any namespace=’##other’ per 3 July, 17 July,
and 24 July telecons.

20030801 JCS Made binding/@interface optional per 31 July meeting.

20030724 JCS Remove @targetResource per 17 July 2003 telecon.

20030612 JJM Incorporate revised targetResource definition, as per 12 June 2003 telcon.

119

E.1 WSDL 2.0 Specification Changes

20030606 JJM Refer to the two graphics by ID. Indicate pseudo-schemas are not normative.

20030604 JJM Fixed figures so they don’t appear as tables. Fixed markup so it validates.

20030603 JCS Plugged in jmarsh auto-generated schema outlines

20030529 MJG Fixed various issues with the XmlRep portions of the spec

20030527 MJG
Added text to 2.2.1 The Interface Component [p.18] and 2.2.3 Mapping Inter-
face’s XML Representation to Component Properties [p.21] indicating that
recursive interface extension is not allowed.

20030523 JJM Added pseudo-syntax to all but Type and Modularizing sections.

20030523 JJM Added the "interface" and "targetResource" attribute on <service>.

20030523 JJM
Fixed miscellaneous typos (semi-colon instead of colon, space after parenthesis,
etc.).

20030523 JJM Rewrote the service-resource text and merge it with the introduction.

20030522 JCS s/set of parts/list of parts/.

20030514 JJM Updated the service-resource figure, and split the diagram into two.

20030512 JJM Added service-resource drawing and description.

20030512 JJM Added syntax summary for the Interface [p.18] component.

20030428 MJG
Various edits to 3. Types [p.73] , other-schemalang to accommodate other type
systems and spell out how extensibility elements/attributes play out in such scenar-
ios.

20030428 MJG
Added text to 1.4 Notational Conventions [p.8] regarding normative nature of
schema and validity of WSDL documents

20030411 JJM
Allowed features and properties at the interface, interface operation, binding and
binding operation levels, as agreed at the Boston f2f
http://lists.w3.org/Archives/Public/www-ws-desc/2003Mar/0019.html.

20030411 JJM
Incorporate features and properties’ text from separate document and merged
change logs

20030313 MJG Changed title to include ’part 1’

20030313 MJG Changed port to endpoint

20030313 MJG Changed type to interface in binding

20030313 MJG Changed mep to pattern and message exchange pattern to message pattern

20030313 MJG Added text to ’mig_porttypes’

20030313 MJG Changed portType to interface

120

E.1 WSDL 2.0 Specification Changes

20030407 JJM Refined and corrected the definitions for features and properties.

20030304 JJM Filled in blank description of Feature and Property [p.44] component.

20030303 MJG Skeleton Feature and Property [p.44] components

20030305 MJG
Merged ComponentModelForMEPs branch (1.46.2.5) into main branch (1.54).
Below is change log from the branch:

20030220 MJG ComponentModelForMEPs: Minor wording change at suggestion of JJM

20030212 MJG
ComponentModelForMEPs: Updated component model to include Fault Reference
component. Associated changes to Port Type Operation component

20030211 MJG ComponentModelForMEPs: Changes to component model to support MEPs

20030228 MJG
Updated 4.2 Importing Descriptions [p.82] to be consistent in layout with other
XML rep sections. Detailed that documentation and extensibility attributes are
allowed, per schema

20030228 MJG
Updated 4.1 Including Descriptions [p.80] to be consistent in layout with other
XML rep sections. Detailed that documentation and extensibility attributes are
allowed, per schema

20030228 MJG
Updated 2.9.2 XML Representation of Binding Component [p.50] to list type
attribute

20030217 MJG Minor edits to wording in 2.4.1 The Interface Operation Component [p.25]

20030213 MJG Added xlink nsdecl to spec element

20030213 MJG Incorporated text from dbooth’s proposal on semantics, per decision 20021031

20030213 MJG
Merged operationnames branch (1.37.2.3) into main branch (1.46). Below is the
change log from the branch.

20030130 MJG
operationnames: Updated binding section to match changes to port type section
WRT operation names

20030130 MJG
operationnames: Added best practice note on operation names and target names-
paces to 2.4.1 The Interface Operation Component [p.25]

20030122 MJG operationnames: Started work on making operations have unique names

20030213 MJG
Change name of {message exchange pattern} back to {variety} to consolidate
changes due to MEP proposal

20030206 MJG Updated Appendix A to refer to Appendix C

20030204 MJG Tidied up appendix C

20030203 MJG Incorporated resolution to R120

121

E.1 WSDL 2.0 Specification Changes

20030124 MJG
Fixed error in 2.5.2 XML Representation of Interface Message Reference
Component [p.32] which had name attribute information item on input, output and
fault element information item being mandatory. Made it optional.

20030123 JJM Change name of {variety} property to {message exchange pattern}

20030130 MJG
Updated binding section to match changes to port type section WRT operation
names

20030130 MJG
Added best practice note on operation names and target namespaces to 2.4.1 The
Interface Operation Component [p.25]

20030122 MJG Started work on making operations have unique names

20030122 MJG Added some <emph>, <el>, <att>, &AII;, &EII;, <el> markup

20030120 MJG Incorporated Relax NG section from Amy’s types proposal

20030120 MJG Incorporated DTD section from Amy’s types proposal

2003020 MJG Incorporated Amy’s types proposal except annexes

20030118 MJG Made some changes related to extensibility

20030118 MJG
Amended content model for operation to disallow fault element children in the
input-only and output-only cases

20030118 MJG
Removed {extension} properties from Binding [p.50] components and Port compo-
nents. Added text relating to how extension elements are expected to annotate the
component model.

20030117 MJG Made further edits related to extensibility model now using substitution groups

20030117 MJG Added initial draft of section on QName resolution

20030117 MJG Reworked section on extensibility

20030116 MJG
Added text regarding multiple operations with the same {name} in a single port
type

20030116 MJG Added section on symbol spaces

20030116 MJG Removed various ednotes

20030116 MJG Added section on component equivalence

20030116 MJG More work on include and import

20021201 MJG Did some work on wsdl:include

20021127 MJG Added placeholder for wsdl:include

20021127 MJG
Cleaned up language concerning targetNamespace attribute information item
2.1.2.1 targetNamespace attribute information item [p.16]

122

E.1 WSDL 2.0 Specification Changes

20021127 MJG
changed the language regarding extensibility elements in 2.1.2 XML Representa-
tion of Description Component [p.15] .

20021127 MJG Moved all issues into issues document (../issues/wsd-issues.xml)

20021127 MJG Removed name attribute from definitions element

20021127 MJG Removed ’pseudo-schema’

20021121 JJM Updated media type draft appendix ednote to match minutes.

20021111 SW Added appendix to record migration issues.

20021107 JJM Incorporated and started adapting SOAP’s media type draft appendix.

20021010 MJG Added port type extensions, removed service type.

20020910 MJG Removed parameterOrder from spec, as decided at September 2002 FTF

20020908 MJG
Updated parameterOrder description, fixed some spelling errors and other types.
Added ednote to discussion of message parts

20020715 MJG AM Rewrite

20020627 JJM Changed a few remaining <emph> to either <att> or <el>, depending on context.

20020627 SW Converted portType stuff to be Infoset based and improved doc structure more.

20020627 SW Converted message stuff to be Infoset based and improved doc structure more.

20020625 SW Mods to take into account JJM comments.

20020624 JJM Fixed spec so markup validates.

20020624 JJM Upgraded the stylesheet and DTD

20020624 JJM Added sections for references and change log.

20020624 JJM Removed Jeffrey from authors :-(Added Gudge :-)

20020620 SW Started adding abstract model

20020406 SW Created document from WSDL 1.1

123

E.1 WSDL 2.0 Specification Changes

	Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language
	W3C Candidate Recommendation 6 January 2006
	Abstract
	Status of this Document
	Short Table of Contents
	Table of Contents
	Appendices

	1. Introduction
	1.1 Web Service
	1.2 Document Conformance
	1.3 The Meaning of a Service Description
	1.4 Notational Conventions
	1.4.1 RFC 2119 Keywords
	1.4.2 RFC 3986 Namespaces
	1.4.3 XML Schema anyURI
	1.4.4 Prefixes and Namespaces Used in This Specification
	1.4.5 Terms Used in This Specification
	1.4.6 XML Information Set Properties
	1.4.7 WSDL 2.0 Component Model Properties
	1.4.8 Z Notation
	1.4.9 BNF Pseudo-Schemas
	1.4.10 Assertions

	2. Component Model
	2.1 Description
	2.1.1 The Description Component
	2.1.2 XML Representation of Description Component
	2.1.2.1 targetNamespace attribute information item

	2.1.3 Mapping Description's XML Representation to Component Properties

	2.2 Interface
	2.2.1 The Interface Component
	2.2.2 XML Representation of Interface Component
	2.2.2.1 name attribute information item with interface [owner element]
	2.2.2.2 extends attribute information item
	2.2.2.3 styleDefault attribute information item

	2.2.3 Mapping Interface's XML Representation to Component Properties

	2.3 Interface Fault
	2.3.1 The Interface Fault Component
	2.3.2 XML Representation of Interface Fault Component
	2.3.2.1 name attribute information item with fault [owner element]
	2.3.2.2 element attribute information item with fault [owner element]

	2.3.3 Mapping Interface Fault's XML Representation to Component Properties

	2.4 Interface Operation
	2.4.1 The Interface Operation Component
	2.4.1.1 Message Exchange Pattern
	2.4.1.2 Operation Style

	2.4.2 XML Representation of Interface Operation Component
	2.4.2.1 name attribute information item with operation [owner element]
	2.4.2.2 pattern attribute information item with operation [owner element]
	2.4.2.3 style attribute information item with operation [owner element]

	2.4.3 Mapping Interface Operation's XML Representation to Component Properties

	2.5 Interface Message Reference
	2.5.1 The Interface Message Reference Component
	2.5.2 XML Representation of Interface Message Reference Component
	2.5.2.1 messageLabel attribute information item with input or output [owner element]
	2.5.2.2 element attribute information item with input or output [owner element]

	2.5.3 Mapping Interface Message Reference's XML Representation to Component Properties

	2.6 Interface Fault Reference
	2.6.1 The Interface Fault Reference Component
	2.6.2 XML Representation of Interface Fault Reference
	2.6.2.1 ref attribute information item with infault , or outfault [owner element]
	2.6.2.2 messageLabel attribute information item with infault , or outfault [owner element]

	2.6.3 Mapping Interface Fault Reference's XML Representation to Component Properties

	2.7 Feature
	2.7.1 The Feature Component
	2.7.1.1 Feature Composition Model
	2.7.1.1.1 Example of Feature Composition Model

	2.7.2 XML Representation of Feature Component
	2.7.2.1 ref attribute information item with feature [owner element]
	2.7.2.2 required attribute information item with feature [owner element]

	2.7.3 Mapping Feature's XML Representation to Component Properties

	2.8 Property
	2.8.1 The Property Component
	2.8.1.1 Property Composition Model

	2.8.2 XML Representation of Property Component
	2.8.2.1 ref attribute information item with property [owner element]
	2.8.2.2 value element information item with property [parent]
	2.8.2.3 constraint element information item with property [parent]

	2.8.3 Mapping Property's XML Representation to Component Properties

	2.9 Binding
	2.9.1 The Binding Component
	2.9.2 XML Representation of Binding Component
	2.9.2.1 name attribute information item with binding [owner element]
	2.9.2.2 interface attribute information item with binding [owner element]
	2.9.2.3 type attribute information item with binding [owner element]
	2.9.2.4 Binding extension elements

	2.9.3 Mapping Binding's XML Representation to Component Properties

	2.10 Binding Fault
	2.10.1 The Binding Fault Component
	2.10.2 XML Representation of Binding Fault Component
	2.10.2.1 ref attribute information item with fault [owner element]
	2.10.2.2 Binding Fault extension elements

	2.10.3 Mapping Binding Fault's XML Representation to Component Properties

	2.11 Binding Operation
	2.11.1 The Binding Operation Component
	2.11.2 XML Representation of Binding Operation Component
	2.11.2.1 ref attribute information item with operation [owner element]
	2.11.2.2 Binding Operation extension elements

	2.11.3 Mapping Binding Operation's XML Representation to Component Properties

	2.12 Binding Message Reference
	2.12.1 The Binding Message Reference Component
	2.12.2 XML Representation of Binding Message Reference Component
	2.12.2.1 messageLabel attribute information item with input or output [owner element]
	2.12.2.2 Binding Message Reference extension elements

	2.12.3 Mapping Binding Message Reference's XML Representation to Component Properties

	2.13 Binding Fault Reference
	2.13.1 The Binding Fault Reference Component
	2.13.2 XML Representation of Binding Fault Reference Component
	2.13.2.1 ref attribute information item with infault or outfault [owner element]
	2.13.2.2 messageLabel attribute information item with infault or outfault [owner element]
	2.13.2.3 Binding Fault Reference extension elements

	2.13.3 Mapping Binding Fault Reference's XML Representation to Component Properties

	2.14 Service
	2.14.1 The Service Component
	2.14.2 XML Representation of Service Component
	2.14.2.1 name attribute information item with service [owner element]
	2.14.2.2 interface attribute information item with service [owner element]

	2.14.3 Mapping Service's XML Representation to Component Properties

	2.15 Endpoint
	2.15.1 The Endpoint Component
	2.15.2 XML Representation of Endpoint Component
	2.15.2.1 name attribute information item with endpoint [owner element]
	2.15.2.2 binding attribute information item with endpoint [owner element]
	2.15.2.3 address attribute information item with endpoint [owner element]
	2.15.2.4 Endpoint extension elements

	2.15.3 Mapping Endpoint's XML Representation to Component Properties

	2.16 XML Schema 1.0 Simple Types Used in the Component Model
	2.17 Equivalence of Components
	2.18 Symbol Spaces
	2.19 QName resolution
	2.20 Comparing URIs and IRIs

	3. Types
	3.1 Using W3C XML Schema Description Language
	3.1.1 Importing XML Schema
	3.1.1.1 namespace attribute information item
	3.1.1.2 schemaLocation attribute information item

	3.1.2 Inlining XML Schema
	3.1.2.1 targetNamespace attribute information item

	3.1.3 References to Element Declarations and Type Definitions

	3.2 Using Other Schema Languages
	3.3 Describing Messages that Refer to Services and Endpoints
	3.3.1 wsdlx:interface attribute information item
	3.3.2 wsdlx:binding attribute information item
	3.3.3 wsdlx:interface and wsdlx:binding Consistency
	3.3.4 Use of wsdlx:interface and wsdlx:binding with xs:anyURI

	4. Modularizing WSDL 2.0 descriptions
	4.1 Including Descriptions
	4.1.1 location attribute information item with include [owner element]

	4.2 Importing Descriptions
	4.2.1 namespace attribute information item
	4.2.2 location attribute information item with import [owner element]

	5. Documentation
	6. Language Extensibility
	6.1 Element based Extensibility
	6.1.1 Mandatory extensions
	6.1.2 required attribute information item

	6.2 Attribute-based Extensibility
	6.3 Extensibility Semantics

	7. Locating WSDL 2.0 Documents
	7.1 wsdli:wsdlLocation attribute information item

	8. Conformance
	8.1 XML Information Set Conformance

	9. XML Syntax Summary (Non-Normative)
	10. References
	10.1 Normative References
	10.2 Informative References

	A. The application/wsdl+xml Media Type
	A.1 Registration
	A.2 Fragment Identifiers
	A.2.1 The Description Component
	A.2.2 The Element Declaration Component
	A.2.3 The Type Definition Component
	A.2.4 The Interface Component
	A.2.5 The Interface Fault Component
	A.2.6 The Interface Operation Component
	A.2.7 The Interface Message Reference Component
	A.2.8 The Interface Fault Reference Component
	A.2.9 The Binding Component
	A.2.10 The Binding Fault Component
	A.2.11 The Binding Operation Component
	A.2.12 The Binding Message Reference Component
	A.2.13 The Binding Fault Reference Component
	A.2.14 The Service Component
	A.2.15 The Endpoint Component
	A.2.16 The Feature Component
	A.2.17 The Property Component
	A.2.18 Extension Components

	A.3 Security considerations

	B. Acknowledgements (Non-Normative)
	C. IRI-References for WSDL 2.0 Components (Non-Normative)
	C.1 WSDL 2.0 IRIs
	C.2 Example

	D. Component Summary (Non-Normative)
	E. Part 1 Change Log (Non-Normative)
	E.1 WSDL 2.0 Specification Changes

