
Web Services Description Language (WSDL) Version 2.0
Part 2: Adjuncts

W3C Candidate Recommendation 6 January 2006
This version:

http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106
Latest version:

http://www.w3.org/TR/wsdl20-adjuncts
Previous versions:

http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-20050803
Editors:

Roberto Chinnici, Sun Microsystems
Hugo Haas, W3C
Amelia A. Lewis, TIBCO Software
Jean-Jacques Moreau, Canon
David Orchard, BEA Systems
Sanjiva Weerawarana, WSO2

This document is also available in these non-normative formats: PDF, PostScript, XML, and plain text.

Copyright © 2006 World Wide Web ConsortiumW3C® (Massachusetts Institute of TechnologyMIT,
European Research Consortium for Informatics and MathematicsERCIM, Keio), All Rights Reserved.
W3C liability, trademark and document use rules apply.

Abstract
WSDL is an XML format for describing network services as a set of endpoints operating on messages
containing either document-oriented or procedure-oriented information. Web Services Description
Language (WSDL) Version 2.0 Part 2: Adjuncts defines predefined extensions for use in WSDL 2.0:

Message exchange patterns

Operation styles

Binding Extensions

This specification depends on WSDL Version 2.0 [WSDL 2.0 Core Language [p.70]].

1

Table of Contents

http://www.w3.org/
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106
http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/2005/WD-wsdl20-adjuncts-20050803
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

Status of this Document
This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

This is the W3C Candidate Recommendation of Web Services Description Language (WSDL) Version 2.0
Part 2: Adjuncts for review by W3C Members and other interested parties. It has been produced by the
Web Services Description Working Group, which is part of the W3C Web Services Activity. The publica-
tion of this document signifies a call for implementations of this specification. This specification will
remain a Candidate Recommendation at least until 15 March 2006.

This Working Draft addresses all the comments received during the second Last Call review period on the
WSDL 2.0 drafts. The detailed disposition of the comments received can be found in the Last Call issues
list. A diff-marked version against the previous version of this document is available. For a detailed list of
changes since the last publication of this document, please refer to appendix C. Part 2 Change Log [p.74]
.

The Working Group plans to submit this specification for consideration as a W3C Proposed Recommen-
dation if the following exit criteria have been met:

Two interoperable implementations of all the features, both mandatory and optional, of the specifica-
tions have been produced.

The Working Group releases a test suite along with an implementation report.

The following features defined in this specification are considered at risk:

Serialization of the instance data in parts of the HTTP request IRI (section 6.8.1 Serialization of the
instance data in parts of the HTTP request IRI [p.57]): feedback is sought on this topic

Definition of the Robust In-Only, In-Optional-Out, Out-Only, Robust Out-Only, Out-In,
Out-Optional-In message exchange pattern (in section 2.3 Message Exchange Patterns [p.11]): the
Working Group is intending to remove those definitions from the specification if it does not have
evidence of their use

Implementers are encouraged to provide feedback by 15 March 2006. Comments on this document are to
be sent to the public public-ws-desc-comments@w3.org mailing list (public archive).

Issues about this document are recorded in the Candidate Recommendation issues list maintained by the
Working Group. A list of formal objections against the set of WSDL 2.0 Working Drafts is also available.

Publication as a Candidate Recommendation does not imply endorsement by the W3C Membership. This
is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inap-
propriate to cite this document as other than work in progress.

2

Status of this Document

http://www.w3.org/TR/
http://www.w3.org/2005/10/Process-20051014/tr.html#RecsCR
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/Activity
http://www.w3.org/2005/10/Process-20051014/tr.html#cfi
http://www.w3.org/2002/ws/desc/5/lc-issues/
http://www.w3.org/2002/ws/desc/5/lc-issues/
http://www.w3.org/2005/10/Process-20051014/tr.html#RecsPR
http://www.w3.org/2005/10/Process-20051014/tr.html#RecsPR
http://www.w3.org/2002/ws/desc/5/impl-report/
http://www.w3.org/2005/10/Process-20051014/tr.html#at-risk-feature
http://www.w3.org/2005/10/Process-20051014/tr.html#cfi
http://lists.w3.org/Archives/Public/public-ws-desc-comments/
http://www.w3.org/2002/ws/desc/5/cr-issues/
http://www.w3.org/2002/ws/desc/5/07/objections.html

This document has been produced under the 24 January 2002 Current Patent Practice as amended by the
W3C Patent Policy Transition Procedure. Patent disclosures relevant to this specification may be found on
the Working Group’s patent disclosure page. An individual who has actual knowledge of a patent which
the individual believes contains Essential Claim(s) with respect to this specification should disclose the
information in accordance with section 6 of the W3C Patent Policy.

Short Table of Contents
1. Introduction [p.6]
2. Predefined Message Exchange Patterns [p.9]
3. Predefined Extensions [p.15]
4. Predefined Operation Styles [p.16]
5. WSDL SOAP Binding Extension [p.22]
6. WSDL HTTP Binding Extension [p.41]
7. References [p.68]
A. Acknowledgements [p.71] (Non-Normative)
B. Component Summary [p.72] (Non-Normative)
C. Part 2 Change Log [p.74] (Non-Normative)

Table of Contents
1. Introduction [p.6]
 1.1 Notational Conventions [p.7]
2. Predefined Message Exchange Patterns [p.9]
 2.1 Template for Message Exchange Patterns [p.10]
 2.1.1 Pattern Name [p.10]
 2.2 Fault Propagation Rules [p.10]
 2.2.1 Fault Replaces Message [p.11]
 2.2.2 Message Triggers Fault [p.11]
 2.2.3 No Faults [p.11]
 2.3 Message Exchange Patterns [p.11]
 2.3.1 In-Only [p.11]
 2.3.2 Robust In-Only [p.12]
 2.3.3 In-Out [p.12]
 2.3.4 In-Optional-Out [p.13]
 2.3.5 Out-Only [p.13]
 2.3.6 Robust Out-Only [p.13]
 2.3.7 Out-In [p.14]
 2.3.8 Out-Optional-In [p.14]
 2.4 Security Considerations [p.15]
3. Predefined Extensions [p.15]
 3.1 Operation safety [p.15]
 3.1.1 Relationship to WSDL Component Model [p.15]
 3.1.2 XML Representation [p.15]

3

Short Table of Contents

http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2002/ws/desc/2/04/24-IPR-statements.html
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

 3.1.3 Mapping from XML Representation to Component Properties [p.16]
4. Predefined Operation Styles [p.16]
 4.1 RPC Style [p.16]
 4.1.1 wrpc:signature Extension [p.17]
 4.1.2 XML Representation of the wrpc:signature Extension [p.19]
 4.1.3 wrpc:signature Extension Mapping To Properties of an Interface Operation component [p.20]
 4.2 IRI Style [p.20]
 4.3 Multipart style [p.21]
5. WSDL SOAP Binding Extension [p.22]
 5.1 XML Syntax Summary (Non-Normative) [p.23]
 5.2 Identifying the use of the SOAP Binding [p.24]
 5.3 SOAP Binding Rules [p.25]
 5.4 Specifying the SOAP Version [p.25]
 5.4.1 Description [p.26]
 5.4.2 Relationship to WSDL Component Model [p.26]
 5.4.3 XML Representation [p.26]
 5.4.4 Mapping from XML Representation to Component properties [p.26]
 5.5 Specifying the SOAP Underlying Protocol [p.26]
 5.5.1 Description [p.27]
 5.5.2 Relationship to WSDL Component Model [p.27]
 5.5.3 XML Representation [p.27]
 5.5.4 Mapping from XML Representation to Component Properties [p.27]
 5.6 Binding Faults [p.27]
 5.6.1 Description [p.27]
 5.6.2 Relationship to WSDL Component Model [p.28]
 5.6.3 XML Representation [p.28]
 5.6.4 Mapping XML Representation to Component Properties [p.29]
 5.7 Binding Operations [p.29]
 5.7.1 Description [p.29]
 5.7.2 Relationship to WSDL Component Model [p.29]
 5.7.3 XML Representation [p.30]
 5.7.4 Mapping from XML Representation to Component Properties [p.30]
 5.8 Declaring SOAP Modules [p.31]
 5.8.1 Description [p.31]
 5.8.2 Relationship to WSDL Component Model [p.31]
 5.8.3 SOAP Module component [p.31]
 5.8.4 XML Representation [p.32]
 5.8.5 Mapping from XML Representation to Component Properties [p.33]
 5.8.6 IRI Identification Of A SOAP Module component [p.33]
 5.9 Declaring SOAP Header Blocks [p.34]
 5.9.1 Description [p.34]
 5.9.2 Relationship to WSDL Component Model [p.34]
 5.9.3 SOAP Header Block component [p.34]
 5.9.4 XML Representation [p.35]
 5.9.5 Mapping XML Representation to Component Properties [p.36]
 5.9.6 IRI Identification Of A SOAP Header Block component [p.37]
 5.10 WSDL SOAP 1.2 Binding [p.37]

4

Table of Contents

 5.10.1 Identifying a WSDL SOAP 1.2 Binding [p.37]
 5.10.2 Description [p.38]
 5.10.3 SOAP 1.2 Binding Rules [p.38]
 5.10.4 Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs [p.39]
 5.10.4.1 Using SOAP Request-Response [p.39]
 5.10.4.1.1 The Client [p.39]
 5.10.4.1.2 The Service [p.40]
 5.10.4.2 Using SOAP-Response [p.40]
 5.10.4.2.1 The Client [p.40]
 5.10.4.2.2 The Service [p.40]
 5.11 Conformance [p.41]
6. WSDL HTTP Binding Extension [p.41]
 6.1 Identifying the use of the HTTP Binding [p.41]
 6.2 HTTP Syntax Summary (Non-Normative) [p.41]
 6.3 HTTP Binding Rules [p.43]
 6.3.1 HTTP Method Selection [p.43]
 6.3.2 Payload Construction And Serialization Format [p.43]
 6.3.2.1 Serialization rules for XML messages [p.44]
 6.3.3 Default input and output serialization format [p.45]
 6.3.4 HTTP Header Construction [p.45]
 6.4 Specifying the HTTP Version [p.46]
 6.4.1 Description [p.46]
 6.4.2 Relationship to WSDL Component Model [p.46]
 6.4.3 XML Representation [p.46]
 6.4.4 Mapping from XML Representation to Component Properties [p.46]
 6.5 Binding Operations [p.47]
 6.5.1 Description [p.47]
 6.5.2 Relationship to WSDL Component Model [p.47]
 6.5.3 Specification of serialization rules allowed [p.48]
 6.5.4 XML Representation [p.49]
 6.5.5 Mapping from XML Representation to Component Properties [p.50]
 6.6 Declaring HTTP Headers [p.51]
 6.6.1 Description [p.51]
 6.6.2 Relationship to WSDL Component Model [p.51]
 6.6.3 HTTP Header component [p.52]
 6.6.4 XML Representation [p.52]
 6.6.5 Mapping from XML Representation to Component Properties [p.54]
 6.6.6 IRI Identification Of A HTTP Header component [p.54]
 6.7 Specifying HTTP Error Code for Faults [p.54]
 6.7.1 Description [p.54]
 6.7.2 Relationship to WSDL Component Model [p.55]
 6.7.3 XML Representation [p.55]
 6.7.4 Mapping from XML Representation to Component Properties [p.55]
 6.8 Serialization Format of Instance Data [p.55]
 6.8.1 Serialization of the instance data in parts of the HTTP request IRI [p.57]
 6.8.1.1 Construction of the request IRI using the {http location} property [p.57]
 6.8.2 Serialization as application/x-www-form-urlencoded [p.58]

5

Table of Contents

 6.8.2.1 Case of elements cited in the {http location} property [p.58]
 6.8.2.2 Serialization of content of the instance data not cited in the {http location} property [p.58]
 6.8.2.2.1 Construction of the query string [p.59]
 6.8.2.2.2 Controlling the serialization of the query string in the request IRI [p.59]
 6.8.2.2.3 Serialization in the request IRI [p.60]
 6.8.2.2.4 Serialization in the message body [p.61]
 6.8.3 Serialization as application/xml [p.61]
 6.8.4 Serialization as multipart/form-data [p.62]
 6.9 Specifying the Transfer Coding [p.63]
 6.9.1 Description [p.63]
 6.9.2 Relationship to WSDL Component Model [p.64]
 6.9.3 XML Representation [p.64]
 6.9.4 Mapping from XML Representation to Component Properties [p.65]
 6.10 Specifying the Use of HTTP Cookies [p.65]
 6.10.1 Description [p.65]
 6.10.2 Relationship to WSDL Component Model [p.66]
 6.10.3 XML Representation [p.66]
 6.10.4 Mapping from XML Representation to Component Properties [p.66]
 6.11 Specifying HTTP Access Authentication [p.66]
 6.11.1 Description [p.66]
 6.11.2 Relationship to WSDL Component Model [p.67]
 6.11.3 XML Representation [p.67]
 6.11.4 Mapping from XML Representation to Component Properties [p.68]
 6.12 Conformance [p.68]
7. References [p.68]
 7.1 Normative References [p.68]
 7.2 Informative References [p.70]

Appendices

A. Acknowledgements [p.71] (Non-Normative)
B. Component Summary [p.72] (Non-Normative)
C. Part 2 Change Log [p.74] (Non-Normative)
 C.1 WSDL 2.0 Extensions Change Log [p.78]
 C.2 WSDL 2.0 Bindings Change Log [p.80]

1. Introduction
The Web Services Description Language WSDL Version 2.0 (WSDL) [WSDL 2.0 Core Language [p.70]]
defines an XML language for describing network services as collections of communication endpoints
capable of exchanging messages. WSDL service definitions provide documentation for distributed
systems and serve as a recipe for automating the details involved in applications communication. This
document defines extensions for the WSDL 2.0 language:

6

1. Introduction

Message exchange patterns: 2. Predefined Message Exchange Patterns [p.9]

Operation safety declaration: 3. Predefined Extensions [p.15]

Operation styles: 4. Predefined Operation Styles [p.16]

Binding extensions:

A SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework [p.69]] binding extension: 5. WSDL
SOAP Binding Extension [p.22]

An HTTP/1.1 [IETF RFC 2616 [p.68]] binding extension: 6. WSDL HTTP Binding Exten-
sion [p.41]

WSDL 2.0 Primer [WSDL 2.0 Primer [p.70]] is a non-normative document intended to provide an easily
understandable tutorial on the features of the WSDL Version 2.0 specifications.

The Core Language [WSDL 2.0 Core Language [p.70]] of the WSDL 2.0 specification describes the core
elements of the WSDL language.

1.1 Notational Conventions

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be inter-
preted as described in RFC2119 [IETF RFC 2119 [p.68]].

This specification uses a number of namespace prefixes throughout; they are listed in Table 1-1 [p.7] .
Note that the choice of any namespace prefix is arbitrary and not semantically significant (see [XML Infor-
mation Set [p.70]]).

7

1.1 Notational Conventions

Table 1-1. Prefixes and Namespaces used in this specification

Prefix Namespace Notes

wsdl "http://www.w3.org/2006/01/wsdl"

This namespace is defined in [WSDL 2.0 Core
Language [p.70]]. A normative XML Schema
[XML Schema Structures [p.70]], [XML
Schema Datatypes [p.70]] document for the
"http://www.w3.org/2006/01/wsdl" namespace
can be found at
http://www.w3.org/2006/01/wsdl. This names-
pace is used as the default namespace through-
out this specification.

wsdlx "http://www.w3.org/2006/01/wsdl-extensions"

This specification extends in section 3. Prede-
fined Extensions [p.15] the
"http://www.w3.org/2006/01/wsdl-extensions"
namespace defined in [WSDL 2.0 Core
Language [p.70]]. A normative XML Schema
[XML Schema Structures [p.70]], [XML
Schema Datatypes [p.70]] document for the
"http://www.w3.org/2006/01/wsdl-extensions"
namespace can be found at
http://www.w3.org/2006/01/wsdl-extensions.

wsoap "http://www.w3.org/2006/01/wsdl/soap"

Defined by this specification. A normative
XML Schema [XML Schema Structures [p.70]
], [XML Schema Datatypes [p.70]] document
for the "http://www.w3.org/2006/01/wsdl/soap"
namespace can be found at
http://www.w3.org/2006/01/wsdl/soap.

whttp "http://www.w3.org/2006/01/wsdl/http"

Defined by this specification. A normative
XML Schema [XML Schema Structures [p.70]
], [XML Schema Datatypes [p.70]] document
for the "http://www.w3.org/2006/01/wsdl/http"
namespace can be found at
http://www.w3.org/2006/01/wsdl/http.

wrpc "http://www.w3.org/2006/01/wsdl/rpc"

Defined by this specification. A normative
XML Schema [XML Schema Structures [p.70]
], [XML Schema Datatypes [p.70]] document
for the "http://www.w3.org/2006/01/wsdl/rpc"
namespace can be found at
http://www.w3.org/2006/01/wsdl/rpc.

xs "http://www.w3.org/2001/XMLSchema"
Defined in the W3C XML Schema specifica-
tion [XML Schema Structures [p.70]], [XML
Schema Datatypes [p.70]].

8

1.1 Notational Conventions

http://www.w3.org/2006/01/wsdl
http://www.w3.org/2006/01/wsdl-extensions
http://www.w3.org/2006/01/wsdl/soap
http://www.w3.org/2006/01/wsdl/http
http://www.w3.org/2006/01/wsdl/rpc

Namespace names of the general form "http://example.org/..." and "http://example.com/..." represent
application or context-dependent URIs [IETF RFC 3986 [p.69]].

All parts of this specification are normative, with the EXCEPTION of pseudo-schemas, examples, and
sections explicitly marked as "Non-Normative". Pseudo-schemas are provided for each component, before
the description of this component. They provide visual help for the XML [XML 1.0 [p.70]] serialization.
The syntax of BNF pseudo-schemas is the same as the one used in [WSDL 2.0 Core Language [p.70]].

2. Predefined Message Exchange Patterns
Web Services Description Language (WSDL) message exchange patterns (hereafter simply ’patterns’)
define the sequence and cardinality of abstract messages listed in an operation. Message exchange patterns
also define which other nodes send messages to, and receive messages from, the service implementing the
operation.

A node is an agent (section 2.3.2.2 Agent of the Web Services Architecture [Web Services Architecture
[p.69]]) that can transmit and/or receive message(s) described in WSDL description(s) and process them.

Note:

A node may be accessible via more than one physical address or transport.

WSDL message exchange patterns describe the interaction at the abstract (interface) level, which may be
distinct from the pattern used by the underlying protocol binding (e.g. SOAP Message Exchange Patterns;
section 5.10.3 SOAP 1.2 Binding Rules [p.38] contains the binding rules for the selection of a SOAP 1.2
message exchange pattern based on the WSDL message exchange pattern in use for the SOAP binding
extension defined in this specification in section 5. WSDL SOAP Binding Extension [p.22]).

By design, WSDL message exchange patterns abstract out specific message types. Patterns identify place-
holders for messages, and placeholders are associated with specific message types by the operation using
the pattern.

Unless explicitly stated otherwise, WSDL message exchange patterns also abstract out binding-specific
information like timing between messages, whether the pattern is synchronous or asynchronous, and
whether the message are sent over a single or multiple channels.

Like interfaces and operations, WSDL message exchange patterns do not exhaustively describe the set of
messages exchanged between a service and other nodes; by some prior agreement, another node and/or the
service may send other messages (to each other or to other nodes) that are not described by the pattern. For
instance, even though a pattern may define a single message sent from a service to one other node, the
Web Service may multicast that message to other nodes.

To maximize reuse, WSDL message exchange patterns identify a minimal contract between other parties
and Web Services, and contain only information that is relevant to both the Web Service and another
party.

9

2. Predefined Message Exchange Patterns

http://www.w3.org/TR/2006/CR-wsdl20-20060106#bnfpseudoschemas
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#agent

This specification defines several message exchange patterns for use with WSDL Version 2.0 Part 1: Core
Language [WSDL 2.0 Core Language [p.70]].

2.1 Template for Message Exchange Patterns

New Message Exchange Patterns may be defined by any organization able and willing to do so. It is
recommended that the patterns use the general template provided here, after examination of existing
predefined patterns.

2.1.1 Pattern Name

This pattern consists of [number] message[s, in order] as follows:

[enumeration, specifying, for each message] A[n optional] message:

1. indicated by a Interface Message Reference component whose {message label} is "[label]" and
{direction} is "[direction]"

2. [received from|sent to] [’some’ if first mention] node [node identifier]

This pattern uses the rule [fault ruleset reference].

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "[pattern IRI]".

Note: In the template, the bracketed items indicate a replacement operation. Substitute the correct terms
for each bracketed item.

Note: the "received from" and "sent to" are always from the point of view of the service, and participating
nodes other than the service are implicitly identified as the originators of or destinations for messages in
the exchange.

2.2 Fault Propagation Rules

WSDL patterns specify their fault propagation model using standard rulesets to indicate where faults may
occur. The most common patterns for fault propagation are defined here, and referenced by patterns later
in the document. "Propagation" is defined as a best-effort attempt to transmit the fault message to its
designated recipient.

WSDL patterns specify propagation of faults, not their generation. Nodes which generate a fault MUST
attempt to propagate the faults in accordance with the governing ruleset, but it is understood that any
delivery of a network message is best effort, not guaranteed. The rulesets establish the direction of the
fault message and the fault recipient, they do not provide reliability or other delivery guarantees. When a
fault is generated, the generating node MUST attempt to propagate the fault, and MUST do so in the direc-
tion and to the recipient specified by the ruleset. However, extensions or binding extensions MAY modify
these rulesets. For example, WS-Addressing [WSA 1.0 Core [p.70]] defines a "FaultTo" address for
messages, which is used in lieu of the recipient nominated by the ruleset.

10

2.1 Template for Message Exchange Patterns

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern

Generation of a fault, regardless of ruleset, terminates the exchange.

Binding extensions, features, or extension specifications may override the semantics of a fault propagation
ruleset, but this practice is strongly discouraged.

2.2.1 Fault Replaces Message

Any message after the first in the pattern MAY be replaced with a fault message, which MUST have iden-
tical direction. The fault message MUST be delivered to the same target node as the message it replaces,
unless otherwise specified by an extension or binding extension. If there is no path to this node, the fault
MUST be discarded.

This fault propagation rule is identified by the following URI:
http://www.w3.org/2006/01/wsdl/fault-replaces-message

2.2.2 Message Triggers Fault

Any message, including the first in the pattern, MAY trigger a fault message, which MUST have opposite
direction. The fault message MUST be delivered to the originator of the triggering message, unless other-
wise specified by an extension of binding extension. Any node MAY propagate a fault message, and
MUST not do so more than once for each triggering message. If there is no path to the originator, the fault
MUST be discarded.

This fault propagation rule is identified by the following URI:
http://www.w3.org/2006/01/wsdl/message-triggers-fault

2.2.3 No Faults

Faults MUST NOT be propagated.

This fault propagation rule is identified by the following URI:
http://www.w3.org/2006/01/wsdl/no-faults

2.3 Message Exchange Patterns

WSDL patterns are described in terms of the WSDL component model, specifically the Interface Message
Reference and Interface Fault Reference components.

2.3.1 In-Only

This pattern consists of exactly one message as follows:

1. A message:

indicated by a Interface Message Reference component whose {message label} is "In" and
{direction} is "in"

11

2.3 Message Exchange Patterns

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction

received from some node N

This pattern uses the rule 2.2.3 No Faults [p.11] .

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/2006/01/wsdl/in-only".

2.3.2 Robust In-Only

This pattern consists of exactly one message as follows:

1. A message:

indicated by a Interface Message Reference component whose {message label} is "In" and
{direction} is "in"

received from some node N

This pattern uses the rule 2.2.2 Message Triggers Fault [p.11] .

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/2006/01/wsdl/robust-in-only".

2.3.3 In-Out

This pattern consists of exactly two messages, in order, as follows:

1. A message:

indicated by a Interface Message Reference component whose {message label} is "In" and
{direction} is "in"

received from some node N

2. A message:

indicated by a Interface Message Reference component whose {message label} is "Out" and
{direction} is "out"

sent to node N

This pattern uses the rule 2.2.1 Fault Replaces Message [p.11] .

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/2006/01/wsdl/in-out".

12

2.3 Message Exchange Patterns

http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern

2.3.4 In-Optional-Out

This pattern consists of one or two messages, in order, as follows:

1. A message:

indicated by a Interface Message Reference component whose {message label} is "In" and
{direction} is "in"

received from some node N

2. An optional message:

indicated by a Interface Message Reference component whose {message label} is "Out" and
{direction} is "out"

sent to node N

This pattern uses the rule 2.2.2 Message Triggers Fault [p.11] .

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/2006/01/wsdl/in-opt-out".

2.3.5 Out-Only

This pattern consists of exactly one message as follows:

1. A message:

indicated by a Interface Message Reference component whose {message label} is "Out " and
{direction} is "out"

sent to some node N

This pattern uses the rule 2.2.3 No Faults [p.11] .

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/2006/01/wsdl/out-only".

2.3.6 Robust Out-Only

This pattern consists of exactly one message as follows:

1. message:

indicated by a Interface Message Reference component whose {message label} is "Out" and
{direction} is "out"

13

2.3 Message Exchange Patterns

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction

sent to some node N

This pattern uses the rule 2.2.2 Message Triggers Fault [p.11] .

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/2006/01/wsdl/robust-out-only".

2.3.7 Out-In

This pattern consists of exactly two messages, in order, as follows:

1. A message:

indicated by a Interface Message Reference component whose {message label} is "Out" and
{direction} is "out"

sent to some node N

2. A message:

indicated by a Interface Message Reference component whose {message label} is "In" and
{direction} is "in"

sent from node N

This pattern uses the rule 2.2.1 Fault Replaces Message [p.11] .

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/2006/01/wsdl/out-in".

2.3.8 Out-Optional-In

This pattern consists of one or two messages, in order, as follows:

1. A message:

indicated by a Interface Message Reference component whose {message label} is "Out" and
{direction} is "out"

sent to some node N

2. An optional message:

indicated by a Interface Message Reference component whose {message label} is "In" and
{direction} is "in"

sent from node N

14

2.3 Message Exchange Patterns

http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagelabel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.direction

This pattern uses the rule 2.2.2 Message Triggers Fault [p.11] .

An operation using this message exchange pattern has a {message exchange pattern} property with the
value "http://www.w3.org/2006/01/wsdl/out-opt-in".

2.4 Security Considerations

Note that many of the message exchange patterns defined above describe responses to an initial message
(either a normal response message or a fault.)

Such responses may be used in attempts to disrupt, attack, or map a network, host, or services. When such
responses are directed to an address other than that originating the initial message, the source of an attack
may be obscured, or blame laid on a third party, or may enable or exacerbate denial-of-service attacks.

Security mechanisms addressing such attacks may prevent the delivery of response messages to the receiv-
ing node. Conformance to the message exchange pattern is measured prior to the application of these secu-
rity mechanisms.

3. Predefined Extensions

3.1 Operation safety

This section defines an extension to WSDL 2.0 [WSDL 2.0 Core Language [p.70]] which allows to mark
an operation as a safe interaction, as defined in section 3.4. Safe Interactions of [Web Architecture [p.69]
].

This extension MAY be used for setting defaults in bindings, such as in an HTTP binding per this specifi-
cation (see 6.5.5 Mapping from XML Representation to Component Properties [p.50]).

3.1.1 Relationship to WSDL Component Model

The safety extension adds the following property to the Interface Operation component model (as defined
in [WSDL 2.0 Core Language [p.70]]):

{safety} REQUIRED. An xs:boolean indicating whether the operation is asserted to be safe for users
of the described service to invoke. If this property is "false", then no assertion has been made about
the safety of the operation, thus the operation MAY or MAY NOT be safe. However, an operation
SHOULD be marked safe if it meets the criteria for a safe interaction defined in Section 3.5 of [Web
Architecture [p.69]].

3.1.2 XML Representation

<description>
 <interface>
 <operation name=" xs:NCName" pattern=" xs:anyURI"

15

3. Predefined Extensions

http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2004/REC-webarch-20041215/#safe-interaction
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation

 wsdlx:safe=" xs:boolean"? >
 </operation>
 </interface>
</description>

The XML representation for the safety extension is an attribute information item with the following
Infoset properties:

An OPTIONAL safe attribute information item with the following Infoset properties:

A [local name] of safe

A [namespace name] of "http://www.w3.org/2006/01/wsdl-extensions"

A type of xs:boolean

3.1.3 Mapping from XML Representation to Component Properties

See Table 3-1 [p.16] .

Table 3-1. Mapping from XML Representation to Interface Operation component Extension Properties

Property Value

{safety [p.15]
}

The actual value of the safe attribute information item, if present, otherwise the value
"false".

4. Predefined Operation Styles
This section defines operation styles that can be used to place constraints on Interface Operation compo-
nents, in particular with respect to the format of the messages they refer to. The serialization formats
defined in section 6.8 Serialization Format of Instance Data [p.55] require bound Interface Operation
components to have one or more of the styles defined in this section.

4.1 RPC Style

The RPC style is selected by assigning to an Interface Operation component’s {style} property the value
"http://www.w3.org/2006/01/wsdl/style/rpc".

In order to conform with the specification for the RPC style, an Interface Operation component MUST
obey the constraints listed below. Furthermore, if the wrpc:signature extension is used, the corre-
sponding attribute information item MUST be valid according to the schema for the extension and addi-
tionally MUST obey the constraints listed in 4.1.1 wrpc:signature Extension [p.17] and 4.1.2 XML
Representation of the wrpc:signature Extension [p.19] .

The RPC style MUST NOT be used for Interface Operation components whose {message exchange
pattern} property has a value other than "http://www.w3.org/2006/01/wsdl/in-only" or
"http://www.w3.org/2006/01/wsdl/in-out".

16

4. Predefined Operation Styles

http://www.w3.org/TR/2006/CR-wsdl20-20060106#InterfaceOperationStyle
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.style
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern

The RPC style places restrictions for Remote Procedure Call-types of interactions. When this value is
used, the associated messages MUST conform to the rules below, described using XML Schema [XML
Schema Structures [p.70]]. Note that operations containing messages described by other type systems
may also indicate use of the RPC style, as long as they are constructed in such a way as to follow these
rules.

If the Interface Operation component uses a {message exchange pattern} for which there is no output
element, i.e. "http://www.w3.org/2006/01/wsdl/in-only", then the conditions stated below that refer to
output elements MUST be considered to be implicitly satisfied.

The value of the {message content model} property for the Interface Message Reference components
of the {interface message references} property MUST be "#element".

The content model of input and output {element declaration} elements MUST be defined using a
complex type that contains a sequence from XML Schema.

The input sequence MUST only contain elements and element wildcards. It MUST NOT contain
other structures such as xs:choice. The input sequence MUST NOT contain more than one element
wildcard. The element wildcard, if present, MUST appear after any elements.

The output sequence MUST only contain elements. It MUST NOT contain other structures such as
xs:choice.

The sequence MUST contain only local element children. Note that these child elements MAY
contain the following attributes: nillable, minOccurs and maxOccurs.

The local name of input element’s QName MUST be the same as the Interface Operation compo-
nent’s name.

Input and output elements MUST both be in the same namespace.

The complex type that defines the body of an input or an output element MUST NOT contain any
local attributes. Extension attributes are allowed for purposes of managing the message infrastructure
(e.g. adding identifiers to facilitate digitally signing the contents of the message). They must not be
considered as part of the application data that is conveyed by the message. Therefore, they are never
included in an RPC signature (see 4.1.1 wrpc:signature Extension [p.17]).

If elements with the same qualified name appear as children of both the input and output elements,
then they MUST both be declared using the same named type.

The input or output sequence MUST NOT contain multiple children elements declared with the same
name.

4.1.1 wrpc:signature Extension

The wrpc:signature extension attribute information item MAY be used in conjunction with the RPC
style to describe the exact signature of the function represented by an operation that uses the RPC style.

17

4.1 RPC Style

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.interfacemessagereferences
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation

When present, the wrpc:signature extension contributes the following property to the Interface Oper-
ation component it is applied to:

{rpc signature} REQUIRED. A list of pairs (q, t) whose first component is of type xs:QName and
whose second component is of type xs:token. Values for the second component MUST be chosen
among the following four: "#in", "#out", "#inout" "#return".

The value of the {rpc signature [p.18] } property MUST satisfy the following conditions:

The value of the first component of each pair (q, t) MUST be unique within the list.

For each child element of the input and output messages of the operation, a pair (q, t) whose first
component q is equal to the qualified name of that element MUST be present in the list, with the
caveat that elements that appear with cardinality greater than one MUST be treated as a single
element.

For each pair (q, #in), there MUST be a child element of the input element with a name of q and there
MUST NOT be a child element of the output element with the same name.

For each pair (q, #out), there MUST be a child element of the output element with a name of q and
there MUST NOT be a child element of the input element with the same name.

For each pair (q, #inout), there MUST be a child element of the input element with a name of q and
there MUST be a child element of the output element with the same name. Furthermore, those two
elements MUST have the same type.

For each pair (q, #return), there MUST be a child element of the output element with a name of q and
there MUST NOT be a child element of the input element with the same name.

The function signature defined by a wrpc:signature extension is determined as follows:

1. Start with the value of the {rpc signature [p.18] } property, a (possibly empty) list of pairs of this
form:

 [(q0, t0), (q1, t1), ...]

2. Filter the elements of this list into two lists, the first one (L1) comprising pairs whose t component is
one of {#in, #out, #inout}, the second (L2) pairs whose t component is #return. During the composi-
tion of L1 and L2, the relative order of members in the original list MUST be preserved.

For ease of visualization, let’s denote the two lists as

 (L1) [(a0, u0), (a1, u1),...]

and

 (L2) [(r0, #return), (r1, #return),...]

18

4.1 RPC Style

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation

respectively.

3. Then, if the input sequence ends with an element wildcard, the formal signature of the function is

 f([d0] a0, [d1] a1, ..., rest) => (r0, r1, ...)

where rest is a formal parameter representing the elements in the input message matched by the
element wildcard.

Otherwise the formal signature of the function is

 f([d0] a0, [d1] a1, ...) => (r0, r1, ...)

i.e.

the list of formal arguments to the function is [a0, a1, ...];

the direction d of each formal argument a is one of [in] , [out] , [inout] , determined according to
the value of its corresponding u token;

the list of formal return parameters of the function is [r0, r1, ...];

each formal argument and formal return parameter is typed according to the type of the child
element identified by it (unique per the conditions given above).

Note:

The wrpc:signature extension allows the specification of multiple return values for an operation.
Several popular programming languages support multiple return values for a function. Moreover, for
languages which do not, the burden on implementors should be small, as typically multiple return values
will be mapped to a single return value of a structure type (or its closest language-specific equivalent).

4.1.2 XML Representation of the wrpc:signature Extension

The XML representation for the RPC signature extension is an attribute information item with the follow-
ing Infoset properties:

A [local name] of signature

A [namespace name] of "http://www.w3.org/2006/01/wsdl/rpc"

The type of the name attribute information item is a list type whose item type is the union of the
xs:QName type and the subtype of the xs:token type restricted to the following four values: "#in", "#out",
"#inout", "#return". See Example 4-1 [p.20] for an excerpt from the normative schema definition of this
type.

Additionally, each even-numbered item (0, 2, 4, ...) in the list MUST be of type xs:QName and each
odd-numbered item (1, 3, 5, ...) in the list MUST be of the subtype of xs:token described in the previous
paragraph.

19

4.1 RPC Style

Example 4-1. Definition of the wrpc:signature extension

<xs:attribute name="signature" type="wrpc:signatureType"/>

<xs:simpleType name="signatureType">
 <xs:list itemType="wrpc:signatureItemType"/>
</xs:simpleType>

<xs:simpleType name="signatureItemType">
 <xs:union memberTypes="xs:QName wrpc:directionToken"/>
</xs:simpleType>

<xs:simpleType name="directionToken">
 <xs:restriction base="xs:token">
 <xs:enumeration value="#in"/>
 <xs:enumeration value="#out"/>
 <xs:enumeration value="#inout"/>
 <xs:enumeration value="#return"/>
 </xs:restriction>
</xs:simpleType>

4.1.3 wrpc:signature Extension Mapping To Properties of an Interface Opera-
tion component

A wrpc:signature extension attribute information item is mapped to the following property of the
Interface Operation component defined by its [owner].

Table 4-1. Mapping of a wrpc:signature Extension to Interface Operation component Properties

Property Value

{rpc signature
[p.18] }

A list of (xs:QName, xs:token) pairs formed by grouping the items present in the
actual value of the wrpc:signature attribute information item in the order in
which they appear there.

4.2 IRI Style

The IRI style is selected by assigning the Interface Operation component’s {style} property the value
"http://www.w3.org/2006/01/wsdl/style/iri".

When using this style, the value of the {message content model} property of the Interface Message Refer-
ence component corresponding to the initial message of the message exchange pattern MUST be
"#element".

Use of this value indicates that XML Schema [XML Schema Structures [p.70]] was used to define the
schema of the {element declaration} property of the Interface Message Reference component of the Inter-
face Operation component corresponding to the initial message of the message exchange pattern. This
schema MUST adhere to the rules below:

20

4.2 IRI Style

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.style
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation

The content model of this element is defined using a complex type that contains a sequence from
XML Schema.

The sequence MUST only contain elements. It MUST NOT contain other structures such as
xs:choice.

The sequence MUST contain only local element children. These child elements MAY contain the
nillable attribute, and the attributes minOccurs and maxOccurs MUST have a value 0 or 1.

The localPart of the element’s QName MUST be the same as the Interface Operation component’s
{name}.

The complex type that defines the body of the element or its children elements MUST NOT contain
any attributes.

The sequence MUST NOT contain multiple children elements declared with the same local name.

If the children elements of the sequence are defined using an XML Schema type, they MUST derive
from xs:simpleType , and MUST NOT be of the type or derive from xs:QName, xs:NOTA-
TION, xs:hexBinary or xs:base64Binary .

4.3 Multipart style

The Multipart style is selected by assigning the Interface Operation component’s {style} property the
value "http://www.w3.org/2006/01/wsdl/style/multipart".

When using this style, the value of the {message content model} property of the Interface Message Refer-
ence component corresponding to the initial message of the message exchange pattern MUST be
"#element".

Use of this value indicates that XML Schema [XML Schema Structures [p.70]] was used to define the
schema of the {element declaration} property of the Interface Message Reference component of the Inter-
face Operation component corresponding to the initial message of the message exchange pattern. This
schema MUST adhere to the rules below:

The content model of this element is defined using a complex type that contains a sequence from
XML Schema.

The sequence MUST only contain elements. It MUST NOT contain other structures such as
xs:choice.

The sequence MUST contain only local element children. These child elements MAY contain the
nillable attribute, and the attributes minOccurs and maxOccurs MUST have a value 1.

The localPart of the element’s QName MUST be the same as the Interface Operation component’s
{name}.

21

4.3 Multipart style

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.name
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.style
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.name

The complex type that defines the body of the element or its children elements MUST NOT contain
any attributes.

The sequence MUST NOT contain multiple children element declared with the same local name.

5. WSDL SOAP Binding Extension
The SOAP binding extension described in this section is SOAP version independent ("1.2" as well as other
versions) and an extension for [WSDL 2.0 Core Language [p.70]] to enable Web Services applications to
use SOAP. This binding extension extends WSDL 2.0 by adding properties to the Binding component as
defined in [WSDL 2.0 Core Language [p.70]]. In addition, an XML Infoset representation for these addi-
tional properties is provided, along with a mapping from that representation to the various component
properties.

As allowed in [WSDL 2.0 Core Language [p.70]], a Binding component MAY exist without indicating a
specific Interface component that it applies to. In this case, there MUST NOT be any Binding Operation or
Binding Fault components present in the Binding component.

The SOAP binding extension is designed with the objective of minimizing what needs to be explicitly
declared for common cases. This is achieved by defining a set of default rules which apply for all Interface
Operation components of an Interface component, unless specifically overridden on a per Interface Opera-
tion basis. Thus, if a given Interface Operation component is not referred to specifically, then all the
default rules apply for that component. That is, per the requirements of [WSDL 2.0 Core Language [p.70]
], all operations of an Interface component are bound according to this binding extension.

A subset of the HTTP properties specified in the HTTP binding extension defined in section 6. WSDL
HTTP Binding Extension [p.41] may be expressed in a SOAP binding when the SOAP binding uses
HTTP as the underlying protocol, for example, when the value of the {soap underlying protocol [p.27] }
property of the Binding component is "http://www.w3.org/2003/05/soap/bindings/HTTP/". The properties
that are allowed are the ones that describe the underlying protocol:

{http version [p.46] } on Binding components, as defined in 6.4 Specifying the HTTP Version
[p.46]

{http location [p.47] } on Binding Operation components, as defined in 6.5 Binding Operations
[p.47]

{http headers [p.51] } on Binding Message Reference and Binding Fault components, as defined in
6.6 Declaring HTTP Headers [p.51]

{http transfer coding default [p.64] } on Binding and Binding Operation components, {http transfer
coding [p.64] } on Binding Message Reference and Binding Fault components, as defined in 6.9
Specifying the Transfer Coding [p.63]

{http cookies [p.66] } on Binding components, as defined in 6.10 Specifying the Use of HTTP
Cookies [p.65]

22

5. WSDL SOAP Binding Extension

http://www.w3.org/TR/2006/CR-wsdl20-20060106#Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding

{http authentication scheme [p.67] } and {http authentication realm [p.67] } on Endpoint compo-
nents, as defined in 6.11 Specifying HTTP Access Authentication [p.66]

5.1 XML Syntax Summary (Non-Normative)
<description>
 <binding name=" xs:NCName" interface=" xs:QName"?
 type=" http://www.w3.org/2006/01/wsdl/soap"
 whttp:version=" xs:string"??
 whttp:transferCodingDefault=" xs:string"??
 wsoap:version=" xs:string"?
 wsoap:protocol=" xs:anyURI"
 wsoap:mepDefault=" xs:anyURI"? >
 <documentation />*

 < wsoap:module ref=" xs:anyURI" required=" xs:boolean"? >
 <documentation />*
 </ wsoap:module>*

 <fault ref=" xs:QName"
 wsoap:code=" union of xs:QName, xs:token"?
 wsoap:subcodes=" list of xs:QName"?
 whttp:transferCoding=" xs:string"?? >

 <documentation />*

 < wsoap:module ... />*
 < wsoap:header element=" xs:QName" mustUnderstand="xs:boolean"?
 required=" xs:boolean"? >
 <documentation />*
 </ wsoap:header>*
 < whttp:header ... />*??

 [<feature /> | <property />]*
 </fault>*

 <operation ref=" xs:QName"
 whttp:location=" xs:anyURI"??
 whttp:transferCodingDefault=" xs:string"?? >
 wsoap:mep=" xs:anyURI"?
 wsoap:action=" xs:anyURI"? >

 <documentation />*

 < wsoap:module ... />*

 <input messageLabel=" xs:NCName"?
 whttp:transferCoding=" xs:string"?? >
 <documentation />*
 < wsoap:module ... />*
 < wsoap:header ... />*
 < whttp:header ... />*??
 [<feature /> | <property />]*
 </input>*

 <output messageLabel=" xs:NCName"?

23

5.1 XML Syntax Summary (Non-Normative)

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Endpoint

 whttp:transferCoding=" xs:string"?? >
 <documentation />*
 < wsoap:module ... />*
 < wsoap:header ... />*
 < whttp:header ... />*??
 [<feature /> | <property />]*
 </output>*

 <infault ref=" xs:QName"
 messageLabel=" xs:NCName"?>
 <documentation />*
 < wsoap:module ... />*
 [<feature /> | <property />]*
 </infault>*

 <outfault ref=" xs:QName"
 messageLabel=" xs:NCName"?>
 <documentation />*
 < wsoap:module ... />*
 [<feature /> | <property />]*
 </outfault>*

 [<feature /> | <property />]*

 </operation>*

 [<feature /> | <property />]*

 </binding>

 <service>
 <endpoint name=" xs:NCName" binding=" xs:QName" address=" xs:anyURI"?
 whttp:authenticationType=" xs:token"??
 whttp:authenticationRealm=" xs:string"?? >
 <documentation />*
 [<feature /> | <property />]*
 </endpoint>
 [<feature /> | <property />]*
 </service>
</description>

Note:

The double question marks ("??") after the attributes in the whttp namespace indicates that those
optional attributes only make sense when the SOAP binding uses HTTP as the underlying protocol, for
example, when the value of the wsoap:protocol attribute is "http://www.w3.org/2003/05/soap/bind-
ings/HTTP/".

5.2 Identifying the use of the SOAP Binding

A Binding component (defined in [WSDL 2.0 Core Language [p.70]]) is identified as a SOAP binding by
assigning the value "http://www.w3.org/2006/01/wsdl/soap" to the {type} property of the Binding compo-
nent.

24

5.2 Identifying the use of the SOAP Binding

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Binding.type
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding

5.3 SOAP Binding Rules

Payload Construction. When formulating the SOAP envelope to be transmitted, the contents of the
payload (i.e., the contents of the SOAP Body element information item of the SOAP envelope)
MUST be what is defined by the corresponding Interface Message Reference component. This is
subject to optimization by a feature that is in use which may affect serialization, such as MTOM
[SOAP Message Transmission Optimization Mechanism [p.70]]. The following binding rules MUST
be adhered to:

If the value of the {message content model} property of the Interface Message Reference
component is "#any" then the payload MAY be any one XML element.

If the value is "#none" then the payload MUST be empty.

If the value is "#element" then the payload will be the element information item identified by the
{element declaration} property of the Interface Message Reference component.

If the Interface Message Reference component is declared using a non-XML type system (as
considered in the Types section of [WSDL 2.0 Core Language [p.70]]) then additional binding
rules MUST be defined to indicate how to map those components into the SOAP envelope.

Note:

This SOAP binding extension only allows one single element in SOAP body.

SOAP Header Construction. If the {soap headers [p.34] } property as defined in section 5.9 Declar-
ing SOAP Header Blocks [p.34] exists and is not empty in a Binding Message Reference or Binding
Fault component, element information item conforming to the element declaration of a SOAP Header
Block [p.34] component’s {element declaration [p.34] } property, in the {soap headers [p.34] } prop-
erty, MAY be turned into a SOAP header block for the corresponding message.

If the value of the SOAP Header Block [p.34] component’s {required [p.35] } property is "true", the
inclusion of this SOAP header block is REQUIRED, otherwise it is OPTIONAL.

And, if the SOAP Header Block [p.34] component’s {mustUnderstand [p.34] } property is present
and its value is "true", that particular SOAP header block should be marked with a mustUnder-
stand attribute information item with a value of "true" or "1" as per the SOAP specification.

SOAP header blocks other than the ones declared in the {soap headers [p.34] } property may be
present at run-time, such as the SOAP header blocks resulting from SOAP modules declared as
explained in section 5.8 Declaring SOAP Modules [p.31] .

5.4 Specifying the SOAP Version

25

5.3 SOAP Binding Rules

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault

5.4.1 Description

Every SOAP binding MUST indicate what version of SOAP is in use for the operations of the interface
that this binding applies to.

By default, SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework [p.69]] is used.

5.4.2 Relationship to WSDL Component Model

The SOAP protocol specification adds the following property to the WSDL component model (as defined
in [WSDL 2.0 Core Language [p.70]]):

{soap version} REQUIRED. A xs:string, to the Binding component.

5.4.3 XML Representation

<description>
 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI"
 wsoap:version=" xs:string"? >
 ...
 </binding>
</description>

The XML representation for specifying the SOAP version is an optional attribute information item with
the following Infoset properties:

A [local name] of version

A [namespace name] of "http://www.w3.org/2006/01/wsdl/soap"

A type of xs:string

5.4.4 Mapping from XML Representation to Component properties

See Table 5-1 [p.26] .

Table 5-1. Mapping from XML Representation to Binding component Extension Properties

Property Value

{soap version
[p.26] }

The actual value of the wsoap:version attribute information item if present,
otherwise "1.2".

5.5 Specifying the SOAP Underlying Protocol

26

5.5 Specifying the SOAP Underlying Protocol

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding

5.5.1 Description

Every SOAP binding MUST indicate what underlying protocol is in use.

5.5.2 Relationship to WSDL Component Model

The SOAP protocol specification adds the following property to the WSDL component model (as defined
in [WSDL 2.0 Core Language [p.70]]):

{soap underlying protocol} REQUIRED. A xs:anyURI, which is an absolute IRI as defined by [IETF
RFC 3987 [p.69]], to the Binding component.

5.5.3 XML Representation

<description>
 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI"
 wsoap:protocol=" xs:anyURI" >
 ...
 </binding>
</description>

The XML representation for specifying the SOAP protocol is a REQUIRED attribute information item
with the following Infoset properties:

A [local name] of protocol

A [namespace name] of "http://www.w3.org/2006/01/wsdl/soap"

A type of xs:anyURI

5.5.4 Mapping from XML Representation to Component Properties

See Table 5-2 [p.27] .

Table 5-2. Mapping from XML Representation to Binding component Extension Properties

Property Value

{soap underlying protocol [p.27]
}

The actual value of the wsoap:protocol attribute information
item.

5.6 Binding Faults

5.6.1 Description

For every Interface Fault component contained in an Interface component, a mapping to a SOAP Fault
must be described. This binding extension specification allows the user to indicate the SOAP fault code
and subcodes that are transmitted for a given Interface Fault component.

27

5.6 Binding Faults

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFault

5.6.2 Relationship to WSDL Component Model

The SOAP Fault binding extension adds the following properties to the WSDL component model (as
defined in [WSDL 2.0 Core Language [p.70]]):

{soap fault code} REQUIRED. A union of xs:QName and xs:token where the allowed token value is
"#any", to the Binding Fault component. The value of this property identifies a possible SOAP fault
for the operations in scope. If the value of this property is "#any", no assertion is made about the
value of the SOAP fault code.

{soap fault subcodes} REQUIRED. A union of list of xs:QName, and xs:token where the allowed
token value is "#any", to the Binding Fault component. The value of this property identifies one or
more subcodes for this SOAP fault. If the value of this property is "#any", no assertion is made about
the value of the SOAP fault subcode.

5.6.3 XML Representation

<description>
 <binding >
 <fault ref=" xs:QName"
 wsoap:code=" union of xs:QName, xs:token"?
 wsoap:subcodes=" list of xs:QName"? >
 <documentation />*
 [<feature /> | <property />]*
 </fault>*
 </binding>
</description>

The XML representation for binding a SOAP Fault are two attribute information items with the following
Infoset properties:

wsoap:code OPTIONAL attribute information item

A [local name] of code

A [namespace name] of "http://www.w3.org/2006/01/wsdl/soap"

A type of union of xs:QName and xs:token where the allowed token value is "#any"

wsoap:subcodes OPTIONAL attribute information item

A [local name] of subcodes

A [namespace name] of "http://www.w3.org/2006/01/wsdl/soap"

A type of union of list of xs:QName, and xs:token where the allowed token value is "#any"

28

5.6 Binding Faults

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault

5.6.4 Mapping XML Representation to Component Properties

See Table 5-3 [p.29] .

Table 5-3. Mapping from XML Representation to SOAP Fault component Properties

Property Value

{soap fault code [p.28] }
The actual value of the code attribute information item if present; otherwise
"#any".

{soap fault subcodes
[p.28] }

The actual value of the subcodes attribute information item, if present;
otherwise "#any".

5.7 Binding Operations

5.7.1 Description

For every Interface Operation component contained in an Interface component, in addition to the binding
rules (for SOAP 1.2, see 5.10.3 SOAP 1.2 Binding Rules [p.38]), there may be additional binding infor-
mation to be specified. This binding extension specification allows the user to indicate the SOAP Message
Exchange Pattern (MEP) and a value for the SOAP Action Feature on a per-operation basis.

5.7.2 Relationship to WSDL Component Model

The SOAP Operation binding extension specification adds the following property to the WSDL compo-
nent model (as defined in [WSDL 2.0 Core Language [p.70]]):

{soap mep default} OPTIONAL. A xs:anyURI, which is an absolute IRI as defined by [IETF RFC
3987 [p.69]], to the Binding component. The value of this property identifies the default SOAP
Message Exchange Pattern (MEP) for all the Interface Operation components of any Interface
component that uses this Binding component.

{soap mep} OPTIONAL. A xs:anyURI, which is an absolute IRI as defined by [IETF RFC 3987
[p.69]], to the Binding Operation component. The value of this property identifies the SOAP
Message Exchange Pattern (MEP) for this specific operation.

{soap action} OPTIONAL. A xs:anyURI, which is an absolute IRI as defined by [IETF RFC 3987
[p.69]], to the Binding Operation component. The value of this property identifies the value of the
SOAP Action Feature for the initial message of the message exchange pattern of the Interface Opera-
tion bound, as specified in the binding rules of bindings to specific versions of SOAP (see 5.10.3
SOAP 1.2 Binding Rules [p.38] for the SOAP 1.2 binding when the value of the {soap version
[p.26] } property of the Binding component is "1.2").

29

5.7 Binding Operations

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding

5.7.3 XML Representation

<description>
 <binding wsoap:mepDefault=" xs:anyURI"? >
 <operation ref=" xs:QName"
 wsoap:mep=" xs:anyURI"?
 wsoap:action=" xs:anyURI"? >
 </operation>
 </binding>
</description>

The XML representation for binding an Operation are two attribute information items with the following
Infoset properties:

wsoap:mep OPTIONAL attribute information item

A [local name] of mep

A [namespace name] of "http://www.w3.org/2006/01/wsdl/soap"

A type of xs:anyURI

wsoap:action OPTIONAL attribute information item

A [local name] of action

A [namespace name] of "http://www.w3.org/2006/01/wsdl/soap"

A type of xs:anyURI

The following attribute information item for the binding element information item is defined:

A [local name] of mepDefault

A [namespace name] of "http://www.w3.org/2006/01/wsdl/soap"

A type of xs:anyURI

5.7.4 Mapping from XML Representation to Component Properties

See Table 5-4 [p.30] .

Table 5-4. Mapping from XML Representation to SOAP Operation Component Properties

Property Value

{soap mep default
[p.29] }

The actual value of the wsoap:mepDefault attribute information item, if
present.

{soap mep [p.29] } The actual value of the wsoap:mep attribute information item, if present.

30

5.7 Binding Operations

{soap action [p.29] } The actual value of the action attribute information item, if any.

5.8 Declaring SOAP Modules

5.8.1 Description

The SOAP messaging framework allows to engage one or more additional features (typically implemented
as one or more SOAP header blocks), as defined by SOAP Modules (see [SOAP 1.2 Part 1: Messaging
Framework [p.69]]). This binding extension specification allows users to indicate which SOAP Modules
are in use across an entire binding, on a per operation basis or on a per message basis.

5.8.2 Relationship to WSDL Component Model

The SOAP Module [p.31] component adds the following property to the WSDL component model (as
defined in [WSDL 2.0 Core Language [p.70]]):

{soap modules} OPTIONAL. A set of SOAP Module [p.31] components as defined in 5.8.3 SOAP
Module component [p.31] to the Binding component

Similarly, {soap modules} OPTIONAL, to the Binding Operation component

Similarly, {soap modules} OPTIONAL, to the Binding Message Reference component

Similarly, {soap modules} OPTIONAL, to the Binding Fault component

Similarly, {soap modules} OPTIONAL, to the Binding Fault Reference component

The SOAP modules applicable for a particular operation of any service consists of all modules specified in
the input or output Binding Message Reference components, the infault or outfault Binding Fault Refer-
ence components, those specified within the Binding Fault components, those specified within the Binding
Operation components and those specified within the Binding component. If any module is declared in
multiple components, then the requiredness of that module is defined by the closest declaration, where
closeness is defined by whether it is specified directly at the Binding Message Reference component or
Binding Fault Reference component level, the Binding Fault level or the Binding Operation component
level or the Binding component level, respectively.

5.8.3 SOAP Module component

The SOAP Module [p.31] component identifies a SOAP module that is in use.

The properties of the SOAP Module component are as follows:

{ref} REQUIRED. A xs:anyURI, which is an absolute IRI as defined by [IETF RFC 3987 [p.69]].
The value of this property identifies the specific SOAP module that is in use.

31

5.8 Declaring SOAP Modules

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding

{required} REQUIRED. A xs:boolean indicating if the SOAP module is required.

{parent} REQUIRED. The Binding, Binding Operation, Binding Message Reference, Binding Fault
or Binding Fault Reference component component that contains this component in its {soap modules
[p.31] } property.

5.8.4 XML Representation

<description>
 <binding >
 < wsoap:module ref=" xs:anyURI"
 required=" xs:boolean"? >
 <documentation ... />*
 </ wsoap:module>
 <fault>
 < wsoap:module ... />*
 </fault>
 <operation>
 < wsoap:module ... />*
 <input>
 < wsoap:module ... />*
 </input>
 <output>
 < wsoap:module ... />*
 </output>
 <infault>
 < wsoap:module ... />*
 </infault>
 <outfault>
 < wsoap:module ... />*
 </outfault>
 </operation>
 </binding>
</description>

The XML representation for a SOAP Module [p.31] component is an element information item with the
following Infoset properties:

A [local name] of module

A [namespace name] of "http://www.w3.org/2006/01/wsdl/soap"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED ref attribute information item with the following Infoset properties:

A [local name] of ref

A [namespace name] which has no value

A type of xs:anyURI

32

5.8 Declaring SOAP Modules

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFaultReference

An OPTIONAL required attribute information item with the following Infoset properties:

A [local name] of required

A [namespace name] which has no value

A type of xs:boolean

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2006/01/wsdl" and MUST NOT
be "http://www.w3.org/2006/01/wsdl/soap".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items as defined in [WSDL 2.0 Core
Language [p.70]].

2. Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2006/01/wsdl" and MUST NOT be
"http://www.w3.org/2006/01/wsdl/soap".

5.8.5 Mapping from XML Representation to Component Properties

See Table 5-5 [p.33] .

Table 5-5. Mapping from XML Representation to SOAP Module component-related Properties

Property Value

{soap
modules
[p.31] }

The set of SOAP Module [p.31] components corresponding to all the module element
information item in the [children] of the binding , operation , fault , input ,
output , infault , outfault element information items, if any.

{ref [p.31] } The actual value of the ref attribute information item.

{required
[p.32] }

The actual value of the required attribute information item if present, otherwise
"false".

{parent
[p.32] }

The Binding, Binding Operation, Binding Message Reference, Binding Fault or Binding
Fault Reference component corresponding to the binding , operation , fault ,
input , output , infault or outfault element information item in [parent].

5.8.6 IRI Identification Of A SOAP Module component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language [p.70]] defines a fragment identi-
fier syntax for identifying components of a WSDL 2.0 document.

33

5.8 Declaring SOAP Modules

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids

A SOAP Module [p.31] component can be identified using the wsdl.extension XPointer Framework
scheme:

wsdl.extension(http://www.w3.org/2006/01/wsdl/soap,
wsoap.module(parent/ ref))

1. parent is the pointer part of the {parent [p.32] } component, as specified in WSDL Version 2.0
Part 1: Core Language.

2. ref is the value of the {ref [p.31] } property of the component.

5.9 Declaring SOAP Header Blocks

5.9.1 Description

SOAP allows the use of header blocks in the header part of the message. This binding extension allows
users to declare the SOAP header blocks in use on a per message and on a per fault basis.

5.9.2 Relationship to WSDL Component Model

The SOAP Header Blocks binding extension specification adds the following property to the WSDL
component model (as defined in [WSDL 2.0 Core Language [p.70]]):

{soap headers} OPTIONAL. A set of SOAP Header Block [p.34] components as defined in 5.9.3
SOAP Header Block component [p.34] , to the Binding Message Reference component.

Similarly, {soap headers} OPTIONAL, to the Binding Fault component.

5.9.3 SOAP Header Block component

A SOAP Header Block [p.34] component describes an abstract piece of header data (SOAP header block)
that is associated with the exchange of messages between the communicating parties. The presence of a
SOAP Header Block [p.34] component in a WSDL description indicates that the service supports headers
and MAY require a Web service consumer/client that interacts with the service to use the described header
block. Zero or one such header block may be used.

The properties of the SOAP Header Block component are as follows:

{element declaration} REQUIRED. A xs:QName, a reference to an XML element declaration in the
{element declarations} property of the Description component. This XML element declaration repre-
sents a SOAP header block.

{mustUnderstand} REQUIRED. A xs:boolean. When its value is "true", the SOAP header block
MUST be decorated with a SOAP mustUnderstand attribute information item with a value of
"true"; if so, it is an error for the XML element declaration referenced by the {element declaration
[p.34] } property not to allow this SOAP mustUnderstand attribute information item. Otherwise,
no additional constraint is placed on the presence and value of a SOAP mustUnderstand attribute
information item.

34

5.9 Declaring SOAP Header Blocks

http://www.w3.org/TR/2006/CR-wsdl20-20060106#wsdl.extension
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Description.elementdeclarations
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Description

{required} REQUIRED. A xs:boolean indicating if the SOAP header block is required. If the value is
"true", then the SOAP header block MUST be included in the message. If it is "false", then the SOAP
header block MAY be included.

{parent} REQUIRED. The Binding Fault or Binding Message Reference component component that
contains this component in its {soap headers [p.34] } property.

5.9.4 XML Representation

<description>
 <binding name=" xs:NCName" type=" http://www.w3.org/2006/01/wsdl/soap" >
 <fault ref=" xs:QName" >
 < wsoap:header element=" xs:QName" mustUnderstand=" xs:boolean"?
 required=" xs:boolean"? >
 <documentation />*
 </ wsoap:header>*
 ...
 </fault>*
 <operation ref=" xs:QName" >
 <input messageLabel=" xs:NCName"?>
 < wsoap:header ... />*
 ...
 </input>*
 <output messageLabel=" xs:NCName"?>
 < wsoap:header ... />*
 ...
 </output>*
 </operation>*
 </binding>
</description>

The XML representation for a SOAP Header Block [p.34] component is an element information item with
the following Infoset properties:

A [local name] of header

A [namespace name] of "http://www.w3.org/2006/01/wsdl/soap"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED element attribute information item with the following Infoset properties:

A [local name] of element

A [namespace name] which has no value

A type of xs:QName

An OPTIONAL mustUnderstand attribute information item with the following Infoset
properties:

35

5.9 Declaring SOAP Header Blocks

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference

A [local name] of mustUnderstand

A [namespace name] which has no value

A type of xs:boolean

An OPTIONAL required attribute information item with the following Infoset properties:

A [local name] of required

A [namespace name] which has no value

A type of xs:boolean

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2006/01/wsdl" and MUST NOT
be "http://www.w3.org/2006/01/wsdl/soap".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items as defined in [WSDL 2.0 Core
Language [p.70]].

2. Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2006/01/wsdl" and MUST NOT be
"http://www.w3.org/2006/01/wsdl/soap".

5.9.5 Mapping XML Representation to Component Properties

See Table 5-6 [p.36] .

36

5.9 Declaring SOAP Header Blocks

Table 5-6. Mapping from XML Representation to SOAP Header Block component-related Properties

Property Value

{soap headers
[p.34] }

The set of SOAP Header Block [p.34] components corresponding to all the
header element information item in the [children] of the fault , input or
output element information item, if any.

{element declara-
tion [p.34] }

The element declaration from the {element declarations} resolved to by the value
of the element attribute information item. It is an error for the element
attribute information item to have a value and that value does not resolve to a
global element declaration from the {element declarations} property of the
Description component.

{mustUnderstand
[p.34] }

The actual value of the mustUnderstand attribute information item if present,
otherwise "false".

{required [p.35] }
The actual value of the required attribute information item if present, otherwise
"false".

{parent [p.35] }
The Binding Fault or Binding Message Reference component corresponding to the
fault , input or output element information item in [parent].

5.9.6 IRI Identification Of A SOAP Header Block component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language [p.70]] defines a fragment identi-
fier syntax for identifying components of a WSDL 2.0 document.

A SOAP Header Block [p.34] component can be identified using the wsdl.extension XPointer Framework
scheme:

wsdl.extension(http://www.w3.org/2006/01/wsdl/soap,
wsoap.header(parent/ namespace#name))

1. parent is the pointer part of the {parent [p.35] } component, as specified in WSDL Version 2.0
Part 1: Core Language.

2. namespace is the {element declaration [p.34] } property value’s namespace URI.

3. name is the {element declaration [p.34] } property value’s local name.

5.10 WSDL SOAP 1.2 Binding

5.10.1 Identifying a WSDL SOAP 1.2 Binding

A WSDL SOAP Binding is identified as a SOAP 1.2 binding by assigning the value "1.2" to the {soap
version [p.26] } property of the Binding component.

37

5.10 WSDL SOAP 1.2 Binding

http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Description.elementdeclarations
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Description.elementdeclarations
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Description
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#wsdl.extension
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding

5.10.2 Description

The WSDL SOAP 1.2 binding extension defined in this section is an extension of the SOAP binding
defined in section 5. WSDL SOAP Binding Extension [p.22] to enable Web Service applications to use
SOAP 1.2 [SOAP 1.2 Part 1: Messaging Framework [p.69]].

The WSDL SOAP 1.2 binding extension supports the SOAP 1.2 HTTP binding defined by the [SOAP 1.2
Part 2: Adjuncts [p.69]] specification. This is indicated by assigning the URI
"http://www.w3.org/2003/05/soap/bindings/HTTP/" (as defined by [SOAP 1.2 Part 2: Adjuncts [p.69]])
to the {soap underlying protocol [p.27] } property. Other values MAY be used for this property in
conjunction with the SOAP 1.2 binding extension defined by this specification provided that the semantics
of such protocols are consistent with this binding extension.

Default rules in section 5.10.3 SOAP 1.2 Binding Rules [p.38] define the relationship between SOAP
message exchange patterns defined in [SOAP 1.2 Part 2: Adjuncts [p.69]] and WSDL message exchange
patterns defined in section 2. Predefined Message Exchange Patterns [p.9] .

When the SOAP Message Exchange Pattern is the SOAP 1.2 Response MEP and the underlying protocol
is HTTP, the Binding Operation may use the {http location [p.47] } property defined in section 6.5
Binding Operations [p.47] . When this property is present on the Binding Operation component, the
Endpoint component also follows the rules for constructing the address from the {address} property and
the {http location [p.47] } property values.

5.10.3 SOAP 1.2 Binding Rules

These binding rules are applicable to SOAP 1.2 bindings.

SOAP Action Feature. The value of the SOAP Action Feature for the initial message of the message
exchange pattern of the Interface Operation bound is specified by the {soap action [p.29] } property
of this Binding Operation component. If the Binding Operation component does NOT have a {soap
action [p.29] } property defined, then the SOAP Action Feature (see [SOAP 1.2 Part 2: Adjuncts
[p.69]]) has NO value. Otherwise, its value is the value of the SOAP Action Feature for the initial
message of the message exchange pattern.

SOAP MEP Selection. For a given Interface Operation component, if there is a Binding Operation
component whose {interface operation} property matches the component in question and its {soap
mep [p.29] } property has a value, then SOAP MEP is the value of the {soap mep [p.29] } property.
Otherwise, the SOAP MEP is the value of the Binding component’s {soap mep default [p.29] }, if
any. Otherwise, if the Interface Operation component’s {message exchange pattern} property has the
value "http://www.w3.org/2006/01/wsdl/in-out", then the SOAP MEP is the URI
"http://www.w3.org/2003/05/soap/mep/request-response/" identifying the SOAP Request-Response
Message Exchange Pattern as defined in [SOAP 1.2 Part 2: Adjuncts [p.69]]. Otherwise (i.e. if the
Interface Operation component has any other value for the {message exchange pattern} property), it
is an ERROR.

38

5.10 WSDL SOAP 1.2 Binding

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Endpoint
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Endpoint.address
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-BindingOperation.interfaceoperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern

Editorial note: One-way MEP defaulting

The Web Services Description Working Group would like to add a rule here defaulting to a stan-
dardized SOAP 1.2 one-way MEP for one-way operations if one becomes available. Feedback is
sought on this topic.

HTTP Method Selection. This default binding rule is applicable when the value of the {soap underly-
ing protocol [p.27] } property of the Binding component is "http://www.w3.org/2003/05/soap/bind-
ings/HTTP/". If the SOAP MEP selected as specified above has the value
"http://www.w3.org/2003/05/soap/mep/request-response/" then the HTTP method used is "POST". If
the SOAP MEP selected has the value "http://www.w3.org/2003/05/soap/mep/soap-response/" then
the HTTP method used is "GET".

HTTP IRI Generation. This default binding rule is applicable when the value of the {soap underlying
protocol [p.27] } property of the Binding component is "http://www.w3.org/2003/05/soap/bind-
ings/HTTP/". If the SOAP MEP selected is "http://www.w3.org/2003/05/soap/mep/soap-response/"
then the value of the SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property
MUST be generated using the HTTP binding extension’s rules for generating a IRI for HTTP GET
(see 6.8.2 Serialization as application/x-www-form-urlencoded [p.58]). The input serialization
format of application/x-www-form-urlencoded is the only supported serialization format
for HTTP GET in the SOAP Response Message Exchange Pattern.

5.10.4 Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs

This section describes the relationship between WSDL components and SOAP 1.2 MEP properties as
described in [SOAP 1.2 Part 2: Adjuncts [p.69]].

5.10.4.1 Using SOAP Request-Response

When using the WSDL "http://www.w3.org/2006/01/wsdl/in-out" message exchange pattern bound to a
SOAP "http://www.w3.org/2003/05/soap/mep/request-response/" MEP (as would be the case for a usual
SOAP-over-HTTP In-Out operation), this section describes the relationships. Extensions (such as [WSA
1.0 Core [p.70]]) MAY alter these mappings.

5.10.4.1.1 The Client

As the client, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property takes the value of the
WSDL {address} property of the Endpoint component.

The WSDL "In" message is mapped to the SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMes-
sage" property.

39

5.10 WSDL SOAP 1.2 Binding

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Endpoint.address
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Endpoint

The WSDL "Out" message maps to the SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage"
property.

5.10.4.1.2 The Service

As the service, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeCon-
text/Role" takes the value "RespondingSOAPNode".

The WSDL "In" message is mapped to the SOAP "http://www.w3.org/2003/05/soap/mep/InboundMes-
sage" property.

The WSDL "Out" message maps to the SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage"
property.

5.10.4.2 Using SOAP-Response

When using the WSDL "http://www.w3.org/2006/01/wsdl/in-out" message exchange pattern bound to a
"http://www.w3.org/2003/05/soap/mep/soap-response/" SOAP MEP, this section describes the relation-
ships.

5.10.4.2.1 The Client

As the client, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeContext/Role"
takes the value "RequestingSOAPNode".

The SOAP "http://www.w3.org/2003/05/soap/mep/ImmediateDestination" property takes the value of the
WSDL {address} property, modified by the {http location [p.47] } property following the rules described
in section 6.8.2 Serialization as application/x-www-form-urlencoded [p.58] .

The SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage" property has no value.

The WSDL "Out" message maps to the SOAP "http://www.w3.org/2003/05/soap/mep/InboundMessage"
property.

5.10.4.2.2 The Service

As the service, the property "http://www.w3.org/2003/05/soap/bindingFramework/ExchangeCon-
text/Role" takes the value "RespondingSOAPNode".

The WSDL "In" message is constructed from the destination URI as per the rules in section 6.8.2 Serial-
ization as application/x-www-form-urlencoded [p.58] .

The WSDL "Out" message maps to the SOAP "http://www.w3.org/2003/05/soap/mep/OutboundMessage"
property.

40

5.10 WSDL SOAP 1.2 Binding

http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Endpoint.address

5.11 Conformance

An element information item whose namespace name is "http://www.w3.org/2006/01/wsdl" and whose
local part is description conforms to this binding extension specification if the element information
items and attribute information items whose namespace is http://www.w3.org/2006/01/wsdl/soap conform
to the XML Schema for that element or attribute as defined by this specification and additionally adheres
to all the constraints contained in this specification.

6. WSDL HTTP Binding Extension
The HTTP binding extension described in this section is an extension for [WSDL 2.0 Core Language
[p.70]] to enable Web Services applications to use HTTP 1.1 [IETF RFC 2616 [p.68]] (as well as other
versions of HTTP) and HTTPS [IETF RFC 2818 [p.69]]. This binding extension extends WSDL 2.0 by
adding properties to the component model defined in [WSDL 2.0 Core Language [p.70]]. In addition an
XML Infoset representation for these additional properties is provided, along with a mapping from that
representation to the various component properties.

As allowed in [WSDL 2.0 Core Language [p.70]], a Binding component MAY exist without indicating a
specific Interface component that it applies to. In this case there MUST NOT be any Binding Operation or
Binding Fault components present in the Binding component.

The HTTP binding extension is designed with the objective of minimizing what needs to be explicitly
declared for common cases. This is achieved by defining a set of default rules which apply for all Interface
Operation components of an Interface component, unless specifically overridden on a per Interface Opera-
tion basis. Thus, if a given Interface Operation component is not referred to specifically, then all the
default rules apply for that component. That is, per the requirements of [WSDL 2.0 Core Language [p.70]
] all operations of an Interface component are bound by an HTTP binding.

[Definition: The internal tree representation of an input, output or fault message is called an instance
data, and is constrained by the schema definition associated the message: the XML element referenced in
the {element declaration} property of the Interface Message Reference component for input and output
messages (unless the {message content model} is "#any"), and in the {element declaration} property of an
Interface Fault component for faults.]

6.1 Identifying the use of the HTTP Binding

A Binding component (defined in [WSDL 2.0 Core Language [p.70]]) is identified as an HTTP binding
by assigning the value "http://www.w3.org/2006/01/wsdl/http" to the {type} property of the Binding
component.

6.2 HTTP Syntax Summary (Non-Normative)
<description>
 <binding name=" xs:NCName" interface=" xs:QName"?
 type=" http://www.w3.org/2006/01/wsdl/http"
 whttp:methodDefault=" xs:string"?
 whttp:queryParameterSeparatorDefault=" xs:string"?

41

6. WSDL HTTP Binding Extension

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceFault.elementdeclaration
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Binding.type
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding

 whttp:cookies=" xs:boolean"?
 whttp:version=" xs:string"?
 whttp:transferCodingDefault=" xs:string"? >
 <documentation />?

 <fault ref=" xs:QName"
 whttp:code=" union of xs:int, xs:token"?
 whttp:transferCoding=" xs:string"? >
 <documentation />*
 < whttp:header name=" xs:string" type=" xs:QName"
 required=" xs:boolean"? >
 <documentation />*
 </ whttp:header>*
 [<feature /> | <property />]*
 </fault>*

 <operation ref=" xs:QName"
 whttp:location=" xs:anyURI"?
 whttp:method=" xs:string"?
 whttp:inputSerialization=" xs:string"?
 whttp:outputSerialization=" xs:string"?
 whttp:faultSerialization=" xs:string"?
 whttp:transferCodingDefault=" xs:string"? >
 <documentation />*

 <input messageLabel=" xs:NCName"?
 whttp:transferCoding=" xs:string? >
 <documentation />*
 < whttp:header ... />*
 [<feature /> | <property />]*
 </input>*

 <output messageLabel=" xs:NCName"?
 whttp:transferCoding=" xs:string? >
 <documentation />*
 < whttp:header ... />*
 [<feature /> | <property />]*
 </output>*

 <infault ref=" xs:QName"
 messageLabel=" xs:NCName"? >
 <documentation />*
 [<feature /> | <property />]*
 </infault>*

 <outfault ref=" xs:QName"
 messageLabel=" xs:NCName"? >
 <documentation />*
 [<feature /> | <property />]*
 </outfault>*

 [<feature /> | <property />]*

 </operation>*

 [<feature /> | <property />]*

42

6.2 HTTP Syntax Summary (Non-Normative)

 </binding>

 <service>
 <endpoint name=" xs:NCName" binding=" xs:QName" address=" xs:anyURI"?
 whttp:authenticationType=" xs:token"?
 whttp:authenticationRealm=" xs:string"? >
 <documentation />*
 [<feature /> | <property />]*
 </endpoint>
 [<feature /> | <property />]*
 </service>
</description>

6.3 HTTP Binding Rules

6.3.1 HTTP Method Selection

When formulating the HTTP message to be transmitted, the HTTP request method used MUST be the
following:

For a given Interface Operation component, if there is a Binding Operation component whose {inter-
face operation} property matches the component in question and its {http method [p.48] } property
has a value, then the value of the {http method [p.48] } property.

Otherwise, the value of the Binding component’s {http method default [p.47] }, if any.

Otherwise, if a {safety [p.15] } property as defined in 3.1 Operation safety [p.15] is present on the
bound Interface Operation component and has a value of "true", the value "GET".

Otherwise, it is an ERROR.

6.3.2 Payload Construction And Serialization Format

When formulating the HTTP message to be transmitted, the contents of the payload (i.e. the contents of
the HTTP message body) MUST be what is defined by the corresponding Interface Message Reference or
Interface Fault components, serialized as specified by the serialization format [p.43] used.

[Definition: The serialization format is a media type token ("type/subtype"). It identifies rules to serialize
a message in an HTTP message. Its value follows the following rules. The HTTP request serialization
format MUST be in the media type range specified by the {http input serialization [p.48] } property. The
HTTP response serialization format MUST be in the media type range specified by the {http output serial-
ization [p.48] } property. The HTTP serialization format of a fault MUST be in the media type range spec-
ified by the {http fault serialization [p.48] } property. The concept of media type range is defined in
Section 14.1 of [IETF RFC 2616 [p.68]]. The serialization format MAY have associated media type
parameters (specified with the parameter production of media-range in Section 14.1 of [IETF
RFC 2616 [p.68]].]

43

6.3 HTTP Binding Rules

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-BindingOperation.interfaceoperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-BindingOperation.interfaceoperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFault

Section 6.8 Serialization Format of Instance Data [p.55] defines serialization formats supported by this
binding extension along with their constraints.

Interface Message Reference component:

If the value of the {message content model} property of the Interface Message Reference bound
is "#any" or "#element", the serialization of the instance data is specified as defined in section
6.3.2.1 Serialization rules for XML messages [p.44] .

If the value is "#none" then the payload MUST be empty and the value of the corresponding
serialization property ({http input serialization [p.48] } or {http output serialization [p.48] }) is
ignored.

If the value is "#other" then the serialization format and its associated media type parameters, if
any [p.43] specifies the value of the HTTP Content-Type entity-header field as defined in
section 14.17 of [IETF RFC 2616 [p.68]]. The serialization of the payload is undefined.

Interface Fault component: the serialization of the instance data is specified as defined in section
6.3.2.1 Serialization rules for XML messages [p.44] .

If the Interface Message Reference component or the Interface Fault component is declared using a
non-XML type system (as considered in the Types section of [WSDL 2.0 Core Language [p.70]]) then
additional binding rules MUST be defined to indicate how to map those components into the HTTP enve-
lope.

6.3.2.1 Serialization rules for XML messages

The serialization rules for messages whose {message content model} is either "#element" or "#any" and
for fault messages are as follows:

If the serialization format [p.43] is "application/x-www-form-urlencoded", then the serialization of
the instance data [p.41] is defined by section 6.8.2 Serialization as application/x-www-form-urlen-
coded [p.58] .

If the serialization format [p.43] is "multipart/form-data", then the serialization of the instance data
[p.41] is defined by section 6.8.4 Serialization as multipart/form-data [p.62] .

If the serialization format [p.43] is "application/xml", then the serialization of the instance data [p.41]
is defined by section 6.8.3 Serialization as application/xml [p.61] .

Otherwise, then the serialization of the instance data [p.41] is defined by section 6.8.3 Serialization
as application/xml [p.61] with the following additional rule: the value of the HTTP
Content-Type entity-header field is the value of the serialization format and its associated media
type parameters, if any [p.43] .

44

6.3 HTTP Binding Rules

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagecontentmodel
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.messagecontentmodel

6.3.3 Default input and output serialization format

Section Table 6-1 [p.45] defines the default values for the GET, POST, PUT and DELETE values of the
HTTP method as selected in section 6.3.1 HTTP Method Selection [p.43] .

Table 6-1. Default values for GET, POST, PUT and DELETE

HTTP Method Default Input Serialization
Default Output Serializa-

tion

Selected in 6.3.1 HTTP
Method Selection

[p.43]
{http input serialization [p.48] }

{http output serialization
[p.48] }

GET application/x-www-form-urlencoded application/xml

POST application/xml application/xml

PUT application/xml application/xml

DELETE application/x-www-form-urlencoded application/xml

Note:

The application/x-www-form-urlencoded serialization format places constraints on the XML
Schema definition of the {element declaration} property of the Interface Message Reference components
of the Interface Operation component bound (see 6.8.2 Serialization as application/x-www-form-urlen-
coded [p.58]).

The default value for the {http input serialization [p.48] } and {http output serialization [p.48] } properties
for any other HTTP method selected is application/xml .

Mechanisms other than setting the serialization properties MAY modify the serialization format of the
instance data [p.41] corresponding to the message. An example of such modification is the WSDL SOAP
Binding HTTP IRI Serialization rules specified in 5.3 SOAP Binding Rules [p.25] . This binding exten-
sion specifies that the SOAP-Response Message Exchange Pattern ([SOAP 1.2 Part 2: Adjuncts [p.69]],
Section 6.3) only supports input message serialization as application/x-www-form-urlen-
coded . Other examples of such mechanisms are other message exchange patterns or binding extensions.

6.3.4 HTTP Header Construction

If the {http headers [p.51] } property as defined in section 6.6 Declaring HTTP Headers [p.51] exists and
is not empty in a Binding Message Reference or Binding Fault component, HTTP headers conforming to
each HTTP Header [p.52] component contained in this {http headers [p.51] } property MAY be serialized
as follows:

The HTTP header field name used is the value of the {name [p.52] } property of the HTTP Header
[p.52] component. If an HTTP header field corresponding to the value of the {name [p.52] } property
is set by a mechanism other than the HTTP binding, such as the HTTP stack or another feature, then

45

6.3 HTTP Binding Rules

http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceMessageReference.elementdeclaration
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/#soapresmep
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault

an error MUST be raised.

The HTTP header field value, whose XML Schema type is declared by the {type definition [p.52] }
property of the HTTP Header [p.52] component, is serialized following the rules of the
field-value production of section 4.2 of [IETF RFC 2616 [p.68]].

If the value of an HTTP Header [p.52] component’s {required [p.52] } property is "true", the inclusion of
this HTTP header field is REQUIRED, otherwise it is OPTIONAL.

6.4 Specifying the HTTP Version

6.4.1 Description

Every Binding component MUST indicate what version of HTTP is in use for the operations of the inter-
face that this binding applies to.

By default, HTTP/1.1 [IETF RFC 2616 [p.68]] is used.

6.4.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following property to the WSDL component model
(as defined in [WSDL 2.0 Core Language [p.70]]):

{http version} REQUIRED. A xs:string to the Binding component. The value of this property follows
the "<major>.<minor>" numbering scheme defined in section 3.1 of Hypertext Transfer Protocol --
HTTP/1.1 [IETF RFC 2616 [p.68]].

6.4.3 XML Representation

<description>
 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI"
 whttp:version=" xs:string"? >
 </binding>
</description>

The XML representation for specifying the HTTP version is an optional attribute information item with
the following Infoset properties:

A [local name] of version

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string whose pattern facet is "[0-9]+\.[0-9]+" .

6.4.4 Mapping from XML Representation to Component Properties

See Table 6-2 [p.47] .

46

6.4 Specifying the HTTP Version

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding

Table 6-2. Mapping from XML Representation to Binding component Extension Properties

Property Value

{http version
[p.46] }

The actual value of the whttp:version attribute information item, if present,
otherwise "1.1".

6.5 Binding Operations

6.5.1 Description

This binding extension specification provides a binding to HTTP of Interface Operation components
whose {message exchange pattern} property has the value "http://www.w3.org/2006/01/wsdl/in-only",
"http://www.w3.org/2006/01/wsdl/robust-in-only" or "http://www.w3.org/2006/01/wsdl/in-out". This
HTTP binding extension MAY be used with other message exchange patterns such as outbound message
exchange patterns, provided that additional semantics are defined, such as with an extension or with a
Feature.

Each of the supported message exchange patterns involves one to two messages or faults being exchanged.
The first is transmitted using an HTTP request, and the second is transmitted using the corresponding
HTTP response. In cases where only one message is being sent, the message body of the HTTP response
MUST be empty.

For every Binding Operation component corresponding to such Interface Operation components, this
binding extension specification allows the user to indicate the HTTP method to use, the input, output and
fault serialization, and the location of the bound operation.

6.5.2 Relationship to WSDL Component Model

The HTTP binding extension adds the following properties to the WSDL component model (as defined in
[WSDL 2.0 Core Language [p.70]]):

{http location} OPTIONAL. A xs:anyURI, to the Binding Operation component. This IRI is
combined with the base IRI specified in the {address} property of the Endpoint component to form
the full IRI for the HTTP request to invoke the operation. It MUST contain an absolute or a relative
IRI, i.e. it MUST NOT include a fragment identifier in the IRI. Input serializations may define addi-
tional processing rules to be applied to the value of {http location [p.47] } before combining it with
the {address} property of the endpoint element to form the HTTP request IRI. For example, the three
serialization formats defined in section 6.8 Serialization Format of Instance Data [p.55] define a
syntax to use the {http location [p.47] } as a template using elements of the instance data.

If the resulting IRI uses the https scheme, then HTTP over TLS [IETF RFC 2818 [p.69]] is used
to send the HTTP request.

{http method default} OPTIONAL. A xs:string, to the Binding component, indicating the default
value for the HTTP Request Method for all the Interface Operation components of any Interface
component that uses this Binding component.

47

6.5 Binding Operations

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.messageexchangepattern
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Endpoint.address
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Endpoint
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Endpoint.address
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface

{http method} OPTIONAL. A xs:string, to the Binding Operation component, indicating the value
for the HTTP Request Method for this specific Binding Operation.

{http input serialization} REQUIRED. A xs:string, to the Binding Operation component, indicating
allowed serialization rules of the HTTP Request message for this specific operation, as described in
section 6.5.3 Specification of serialization rules allowed [p.48] .

{http output serialization} REQUIRED. A xs:string, to the Binding Operation component, indicating
allowed serialization rules of the HTTP Response message for this specific operation, as described in
section 6.5.3 Specification of serialization rules allowed [p.48] .

{http fault serialization} REQUIRED. A xs:string, to the Binding Operation component, indicating
allowed serialization rules of the HTTP Response message for this specific operation in case a fault is
returned, as described in section 6.5.3 Specification of serialization rules allowed [p.48] .

{http query parameter separator default} REQUIRED. A xs:string, to the Binding component, indi-
cating the default query parameter separator character for all the Interface Operation components of
any Interface component that uses this Binding component.

{http query parameter separator} OPTIONAL. A xs:string, to the Binding Operation component,
indicating the query parameter separator character for this Binding Operation component.

6.5.3 Specification of serialization rules allowed

The value of the {http input serialization [p.48] }, {http output serialization [p.48] } and {http fault serial-
ization [p.48] } properties is similar to the value allowed for the Accept HTTP header defined by the
HTTP 1.1 specification, Section 14.1 (see [IETF RFC 2616 [p.68]]) and MUST follow the production
rules defined in that section except for the following:

1. The prefix "Accept:" MUST NOT be used.

2. The rule qdtext is changed from:

qdtext = <any TEXT except<">>

to:

qdtext = <any CHAR except<">>

This change is made to disallow non-US-ASCII OCTETs.

These properties allow to indicate the range of media types and/or associated parameters with which an
instance MAY be serialized. The value of the serialization format [p.43] used for a message is a media
type which MUST be covered by this range. Users of this attribute information item are urged to avoid
using wild cards (for example, "application/*") as it may lead to interoperability problems.

The use of {http input serialization [p.48] }, {http output serialization [p.48] } and {http fault serialization
[p.48] } is specified in section 6.3.2 Payload Construction And Serialization Format [p.43] .

48

6.5 Binding Operations

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation

6.5.4 XML Representation

<description>
 <binding whttp:methodDefault=" xs:string"?
 whttp:queryParameterSeparatorDefault=" xs:string"? >
 <operation ref=" xs:QName"
 whttp:location=" xs:anyURI"?
 whttp:method=" xs:string"?
 whttp:inputSerialization=" xs:string"?
 whttp:outputSerialization=" xs:string"?
 whttp:faultSerialization=" xs:string"?
 whttp:queryParameterSeparator=" xs:string"? >
 </operation>
 </binding>
</description>

The XML representation for binding an Operation are six attribute information items with the following
Infoset properties:

An OPTIONAL location attribute information item with the following Infoset properties:

A [local name] of location

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:anyURI

An OPTIONAL method attribute information item with the following Infoset properties:

A [local name] of method

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string

An OPTIONAL inputSerialization attribute information item with the following Infoset
properties:

A [local name] of inputSerialization

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string

An OPTIONAL outputSerialization attribute information item with the following Infoset
properties:

A [local name] of outputSerialization

49

6.5 Binding Operations

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string

An OPTIONAL faultSerialization attribute information item with the following Infoset
properties:

A [local name] of faultSerialization

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string

An OPTIONAL queryParameterSeparator attribute information item with the following
Infoset properties:

A [local name] of queryParameterSeparator

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string whose length facet value is "1"

The following attribute information items for the binding element information item are defined:

An OPTIONAL methodDefault attribute information item with the following Infoset properties:

A [local name] of methodDefault

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string

An OPTIONAL queryParameterSeparatorDefault attribute information item with the
following Infoset properties:

A [local name] of queryParameterSeparatorDefault

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string whose length facet value is "1"

6.5.5 Mapping from XML Representation to Component Properties

See Table 6-3 [p.50] .

50

6.5 Binding Operations

Table 6-3. Mapping from XML Representation to Binding Operation component Extension Properties

Property Value

{http location [p.47]
}

The actual value of the whttp:location attribute information item, if present.

{http method
default [p.47] }

The actual value of the whttp:methodDefault attribute information item, if
present.

{http method [p.48]
}

The actual value of the whttp:method attribute information item, if present.

{http input serializa-
tion [p.48] }

The actual value of the whttp:inputSerialization attribute information
item, if present; otherwise, the default value as defined in 6.3 HTTP Binding
Rules [p.43] .

{http output serial-
ization [p.48] }

The actual value of the whttp:outputSerialization attribute information
item, if present; otherwise, the default value as defined in 6.3 HTTP Binding
Rules [p.43] .

{http fault serializa-
tion [p.48] }

The actual value of the whttp:faultSerialization attribute information
item, if present; otherwise "application/xml".

{http query parame-
ter separator default
[p.48] }

The actual value of the whttp:queryParameterSeparatorDefault
attribute information item, if present; otherwise, "&".

{http query parame-
ter separator [p.48]
}

The actual value of the whttp:queryParameterSeparator attribute infor-
mation item, if present.

6.6 Declaring HTTP Headers

6.6.1 Description

HTTP allows the use of headers in messages. This binding extension allows users to declare the HTTP
headers in use on a per message and on a per fault basis.

6.6.2 Relationship to WSDL Component Model

The HTTP Header binding extension specification adds the following property to the WSDL component
model (as defined in [WSDL 2.0 Core Language [p.70]]):

{http headers} OPTIONAL. A set of HTTP Header [p.52] components as defined in 6.6.3 HTTP
Header component [p.52] , to the Binding Message Reference component.

51

6.6 Declaring HTTP Headers

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference

Similarly, {http headers} OPTIONAL, to the Binding Fault component.

It is an ERROR for a Binding Message Reference or a Binding Fault component’s {http headers [p.51] }
property to contain multiple HTTP Header [p.52] components with the same {name [p.52] } property.

6.6.3 HTTP Header component

A HTTP Header [p.52] component describes an abstract piece of header data (HTTP header field) that is
associated with the exchange of messages between the communicating parties. The presence of a HTTP
Header [p.52] component in a WSDL description indicates that the service support headers and MAY
require a Web service consumer/client that interacts with the service to use the described header field.
Zero or one such header field may be used.

The properties of the HTTP Header component are as follows:

{name} REQUIRED. A xs:string whose pattern facet is "[!#-’*+\-.0-9A-Z^-z|~]+" , the name of the
HTTP header field. The value of this property follows the field-name production rules as speci-
fied in section 4.2 of [IETF RFC 2616 [p.68]].

{type definition} REQUIRED. A xs:QName, being a reference to a Type Definition component in the
{type definitions} property of the Description component constraining the value of the HTTP header
field. This type MUST be a simple type.

{required} REQUIRED. A xs:boolean indicating if the HTTP header field is required. If the value is
"true", then the HTTP header field MUST be included in the message. If it is "false", then the HTTP
header field MAY be included.

{parent} REQUIRED. The Binding Fault or Binding Message Reference component component that
contains this component in its {http headers [p.51] } property.

6.6.4 XML Representation

<description>
 <binding name=" xs:NCName" type=" http://www.w3.org/2006/01/wsdl/http" >
 <fault ref=" xs:QName">
 < whttp:header name=" xs:QName" type=" xs:QName"
 required=" xs:boolean"? >
 <documentation />*
 </ whttp:header>*
 ...
 </fault>*
 <operation ref=" xs:QName" >
 <input messageLabel=" xs:NCName"?>
 < whttp:header ... />*
 ...
 </input>*
 <output messageLabel=" xs:NCName"?>
 < whttp:header ... />*
 ...

52

6.6 Declaring HTTP Headers

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-TypeDefinition
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Description.typedefinitions
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Description
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference

 </output>*
 </operation>*
 </binding>
</description>

The XML representation for a HTTP Header [p.52] component is an element information item with the
following Infoset properties:

A [local name] of header

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

One or more attribute information items amongst its [attributes] as follows:

A REQUIRED name attribute information item with the following Infoset properties:

A [local name] of name

A [namespace name] which has no value

A type of xs:string whose pattern facet is "[!#-’*+\-.0-9A-Z^-z|~]+" .

A REQUIRED type attribute information item with the following Infoset properties:

A [local name] of type

A [namespace name] which has no value

A type of xs:QName

An OPTIONAL required attribute information item with the following Infoset properties:

A [local name] of required

A [namespace name] which has no value

A type of xs:boolean

Zero or more namespace qualified attribute information items. The [namespace name] of such
attribute information items MUST NOT be "http://www.w3.org/2006/01/wsdl" and MUST NOT
be "http://www.w3.org/2006/01/wsdl/http".

Zero or more element information item amongst its [children], in order, as follows:

1. Zero or more documentation element information items as defined in [WSDL 2.0 Core
Language [p.70]].

2. Zero or more namespace-qualified element information items amongst its [children]. The
[namespace name] of such element information items MUST NOT be
"http://www.w3.org/2006/01/wsdl" and MUST NOT be
"http://www.w3.org/2006/01/wsdl/http".

53

6.6 Declaring HTTP Headers

6.6.5 Mapping from XML Representation to Component Properties

See Table 6-4 [p.54] .

Table 6-4. Mapping from XML Representation to HTTP Header component-related Properties

Property Value

{http headers
[p.51] }

The set of HTTP Header [p.52] components corresponding to all the header element
information item in the [children] of the fault , input or output element informa-
tion item, if any.

{name [p.52] } The value of the name attribute information item.

{type defini-
tion [p.52] }

The Type Definition component from the {type definitions} property of the Descrip-
tion component resolved to by the value of the type attribute information item.

{required
[p.52] }

The actual value of the required attribute information item if present, otherwise
"false".

{parent [p.52]
}

The Binding Fault or Binding Message Reference component corresponding to the
fault , input or output element information item in [parent].

6.6.6 IRI Identification Of A HTTP Header component

WSDL Version 2.0 Part 1: Core Language [WSDL 2.0 Core Language [p.70]] defines a fragment identi-
fier syntax for identifying components of a WSDL 2.0 document.

An HTTP Header [p.52] component can be identified using the wsdl.extension XPointer Framework
scheme:

wsdl.extension(http://www.w3.org/2006/01/wsdl/http,
whttp.header(parent/ name))

1. parent is the pointer part of the {parent [p.52] } component, as specified in WSDL Version 2.0
Part 1: Core Language.

2. name is the {name [p.52] } property value.

6.7 Specifying HTTP Error Code for Faults

6.7.1 Description

For every Interface Fault component contained in an Interface component, an HTTP error code MAY be
defined. It represents the error code that will be used by the service in case the fault needs to be returned.

The fault definition SHOULD NOT go against the definition of the HTTP error codes, as specified in
section 8 of [IETF RFC 3205 [p.69]].

54

6.7 Specifying HTTP Error Code for Faults

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-TypeDefinition
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Description.typedefinitions
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Description
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Description
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#wsdl.extension
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#frag-ids
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface

6.7.2 Relationship to WSDL Component Model

The HTTP Fault binding extension adds the following property to the WSDL component model (as
defined in [WSDL 2.0 Core Language [p.70]]):

{http error status code} REQUIRED. A union of xs:int and xs:token where the allowed token value is
"#any", to the Binding Fault component. An integer value of this property identifies the error
Status-Code as defined by [IETF RFC 2616 [p.68]] that the service will use in case the fault is
returned. If the value of this property is "#any", no claim is made by the service.

6.7.3 XML Representation

<description>
 <binding >
 <fault ref=" xs:QName"
 whttp:code=" union of xs:int, xs:token"? >
 </fault>*
 </binding>
</description>

The XML representation for binding an HTTP Fault are two attribute information items with the following
Infoset properties:

a code OPTIONAL attribute information item

A [local name] of code

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of union of xs:int and xs:token where the allowed token value is "#any"

6.7.4 Mapping from XML Representation to Component Properties

See Table 6-5 [p.55] .

Table 6-5. Mapping from XML Representation to Binding Fault component Extension Properties

Property Value

{http error status code
[p.55] }

The actual value of the whttp:code attribute information item, if present;
otherwise "#any".

6.8 Serialization Format of Instance Data

This section specifies three serialization formats defining rules to encode an instance data [p.41] corre-
sponding to an input and output message as an HTTP message. Table 6-6 [p.56] and Table 6-7 [p.56] give
an overview of those serialization formats and their constraints. All of them allow serialization of parts of
the instance data [p.41] in the HTTP Request IRI, as defined in section 6.8.1 Serialization of the instance
data in parts of the HTTP request IRI [p.57] .

55

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault

Other serialization formats may be defined. Those MAY place restrictions on the style of the Interface
Operation bound.

Table 6-6. Applicability of the serialization formats defined in this section for this HTTP binding

-

Serialization of the instance data in parts of an HTTP message

In the
request

URI

In the message body

application/x-www-form-urlencoded multipart/form-data application/xml

HTTP
request
(input

message)

Without
message
body:
GET,

DELETE,
…

All,
some

or none
- - -

With
message
body:
POST,

PUT, …

All,
some

or none
Remainder All All

HTTP response
(output message)

- - - All

Table 6-7. Operation styles required for using serialization formats defined below as input serialization

HTTP
Method

Request

Request
URI: query
parameters

or path
components

Input serialization

application/x-www-form-urlencoded multipart/form-data application/xml

Without
message
body:
GET,

DELETE,
…

IRI style IRI style - -

56

6.8 Serialization Format of Instance Data

With
message
body:
POST,

PUT, …

IRI style, if
any data is

serialized as
path compo-

nents or
query

parameters

IRI style Multipart style None required

6.8.1 Serialization of the instance data in parts of the HTTP request IRI

Editorial note: URIPath Feedback Requested

The inclusion of elements of the instance data in the path of the request URI, whilst supported by WSDL
1.1, is not supported by XForms 1.0. Hence this mechanism MAY be removed in a future version of this
specification. Feedback on this issue from users and implementers is highly encouraged.

This section defines templating rules for the {http location [p.47] } property of the Binding Operation
component. It is used by the serialization formats defined in section 6.8 Serialization Format of Instance
Data [p.55] , and MAY be reused by other serialization formats.

With this HTTP binding, part of the instance data for HTTP requests MAY be serialized in the HTTP
request IRI, and another part MAY be serialized in the HTTP message body.

If the {style} property of the Interface Operation bound has a value of
"http://www.w3.org/2006/01/wsdl/style/iri" as defined in 4.2 IRI Style [p.20] , and if the {http location
[p.47] } property of the Binding Operation component is present, the value of the {http location [p.47] }
property component is used as a template which is combined with the {address} property of the endpoint
element to form the full IRI to be used in an HTTP request, as specified in section 6.5.2 Relationship to
WSDL Component Model [p.47] .

The resulting IRI MUST be mapped to an URI for use in the HTTP Request as per section 3.1 "Mapping
of IRIs to URIs" of the IRI specification [IETF RFC 3987 [p.69]]. Additional rules for the serialization of
the HTTP request IRI MAY be defined by a serialization format.

6.8.1.1 Construction of the request IRI using the {http location} property

The {http location [p.47] } property, if present, MAY cite local names of elements from the instance data
[p.41] of the message to be serialized in request IRI by enclosing the element name within curly braces
(e.g. "temperature/{town}"):

When constructing the request IRI, each pair of curly braces (and enclosed element name) is replaced
by the possibly empty single value of the corresponding element. It is an error for this element to
carry an xs:nil attribute whose value is "true".

57

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.style
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Endpoint.address

A double curly brace (i.e. "{{" or "}}") MAY be used to include a single, literal curly brace in the
request IRI.

An element MUST NOT be cited more than once within the {http location [p.47] } property.

Strings enclosed within single curly braces MUST be element names from the instance data [p.41] of the
input message, possibly followed by a slash; any other strings enclosed within single curly braces are a
fatal error.

6.8.2 Serialization as "application/x-www-form-urlencoded"

This serialization format is designed to allow a client or Web service to produce an IRI based on the
instance data [p.41] of a message and serialize a query string in the HTTP message body as applica-
tion/x-www-form-urlencoded .

It may only be used when binding Interface Operation whose {style} property has a value of
"http://www.w3.org/2006/01/wsdl/style/iri" as defined in 4.2 IRI Style [p.20] , i.e. this serialization
format may only be used to serialize the HTTP request corresponding to the initial message of an interface
operation.

Because the IRI Style constrains the instance data not to contain multiple children elements declared with
the same local name, elements can be serialized in the request IRI with their local names unambiguously.

For the HTTP binding defined in this section (6. WSDL HTTP Binding Extension [p.41]), "applica-
tion/x-www-form-urlencoded" MAY be used as a serialization format [p.43] for an input message (HTTP
Request), but MUST NOT be used as a serialization format [p.43] for an output or fault message (HTTP
Response).

6.8.2.1 Case of elements cited in the {http location} property

In this serialization, the rules for constructing the HTTP request IRI using elements cited in the {http loca-
tion [p.47] } property defined in 6.8.1 Serialization of the instance data in parts of the HTTP request
IRI [p.57] apply. Additional rules for constructing the HTTP request IRI follow.

6.8.2.2 Serialization of content of the instance data not cited in the {http location} property

If not all elements from the instance data [p.41] are cited in the {http location [p.47] } property, or if the
property is not present on the Binding Operation component, then additional serialization rules apply.

The remainder of the instance data is formatted as a query string as defined in 6.8.2.2.1 Construction of
the query string [p.59] .

If the HTTP method used for the request does not allow a message body, then this query string is serial-
ized as parameters in the request IRI (see 6.8.2.2.3 Serialization in the request IRI [p.60]), otherwise it
is serialized in the message body (see 6.8.2.2.4 Serialization in the message body [p.61]).

58

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.style
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation

6.8.2.2.1 Construction of the query string

For elements of the instance data not cited in the {http location [p.47] } property, a query string is
constructed as follows.

Non-nil elements with a possibly empty single value of the instance data [p.41] not cited are serialized as
query parameters in the order they appear in the instance data.

It is an error for the instance data [p.41] to contain elements with an xs:nil attribute whose value is
"true".

Each parameter pair is separated by the value of the {http query parameter separator [p.48] } property, if
present, or the value of the {http query parameter separator default [p.48] } property.

Uncited elements with single values (non-list) are serialized as a single name-value parameter pair.
The name of the parameter is the local name of the uncited element, and the value of the parameter is
the value of the uncited element.

Uncited elements with list values are serialized as one name-value parameter pair per list value. The
name of each parameter is the local name of the uncited element, and the value of each parameter is
the corresponding value in the list. The order of the list values is preserved.

Example 6-1. Query string generation

The following instance data of an input message

<data>
 <town>Fréjus</town>
 <date>2006-01-06</date>
 <unit>C</unit>
</data>

with the following value of the {http location [p.47] } property:

’temperature/{town}’

and the following value of the {http query parameter separator default [p.48] } property:

’&’

will produce the following query string:

date=2006-01-06&unit=C

6.8.2.2.2 Controlling the serialization of the query string in the request IRI

This serialization format adds the following property to the WSDL component model:

{http location ignore uncited} MANDATORY. A xs:boolean. This boolean indicates whether
elements not cited in the {http location [p.47] } property MUST be appended to the request IRI or
ignored. If the value of this property is "false", the rules defined in section 6.8.2.2.3 Serialization in

59

6.8 Serialization Format of Instance Data

the request IRI [p.60] dictate how to serialize elements not cited in {http location [p.47] } in the
request IRI. Otherwise, those are NOT serialized in the request IRI.

The XML representation for this property is an attribute information item with the following Infoset prop-
erties:

An OPTIONAL ignoreUncited attribute information item with the following Infoset properties:

A [local name] of ignoreUncited

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:boolean

The mapping from the XML representation to component properties is as follows:

Table 6-8. Mapping from XML Representation to Binding Operation component Extension Properties

Property Value

{http location ignore
uncited [p.59] }

The actual value of the whttp:ignoreUncited attribute information
item, if present. Otherwise, "false".

6.8.2.2.3 Serialization in the request IRI

If the HTTP request method used does not allow HTTP message body (e.g. "GET" and "DELETE"), and if
the value of the {http location ignore uncited [p.59] } property is "false", then the following rules apply.

If the {http location [p.47] } property is not present, or if it is present and its value does not contain a "?"
(question mark) character, one is appended to the request IRI. If it does already contain a question mark
character, then the value of the {http query parameter separator [p.48] } property, if present, or the value
of the {http query parameter separator default [p.48] } property otherwise, is appended.

Finally, the query string computed in 6.8.2.2.1 Construction of the query string [p.59] is appended.

Example 6-2. Instance data serialized in a IRI

The instance data defined in Example 6-1 [p.59] with the following operation declaration:

<operation ref=’t:data’
 whttp:location=’temperature/{town}’
 whttp:method=’GET’ />

and the following endpoint declaration:

<endpoint name=’e’ binding=’t:b’
 address=’http://ws.example.com/service1/’ />

60

6.8 Serialization Format of Instance Data

will serialize the message in the HTTP request as follows:

GET http://ws.example.com/service1/
 temperature/Fr%C3%A9jus?date=2006-01-06&unit=C HTTP/1.1
Host: ws.example.com

6.8.2.2.4 Serialization in the message body

If the HTTP request method used does allow an HTTP message body (e.g. "POST" and "PUT"), then the
following rules apply.

Finally, the query string computed in 6.8.2.2.1 Construction of the query string [p.59] is used as the
value of the HTTP message body.

The Content-Type HTTP header field must have the value application/x-www-form-urlen-
coded .

Example 6-3. Instance data serialized in the HTTP Request IRI and message body

The instance data defined in Example 6-1 [p.59] with the following operation declaration:

<operation ref=’t:data’
 whttp:inputSerialization=’application/x-www-form-urlencoded’
 whttp:location=’temperature/{town/}’
 whttp:method=’POST’ />

and the following endpoint declaration:

<endpoint name=’e’ binding=’t:b’
 address=’http://ws.example.com/service1/’ />

will serialize the message in the HTTP request as follow:

POST http://ws.example.com/service1/temperature/Fr%C3%A9jus HTTP/1.1
Host: ws.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: …

date=2006-01-06&unit=C

6.8.3 Serialization as "application/xml"

In this serialization, for HTTP requests, the rules for constructing the HTTP request IRI defined in 6.8.1
Serialization of the instance data in parts of the HTTP request IRI [p.57] apply if the {style} property
of the Interface Operation bound has a value of "http://www.w3.org/2006/01/wsdl/style/iri" as defined in
4.2 IRI Style [p.20] .

The instance data [p.41] of the input, output or fault message is serialized as an XML document in the
message body of the HTTP message, following the serialization defined in [Canonical XML [p.68]].
Therefore, it is only suitable for HTTP requests using methods allowing message bodies (i.e., for the
HTTP binding defined in this specification, input messages where the HTTP method selected has a body),
and for HTTP responses (i.e. output and fault messages for the HTTP binding defined in this specifica-

61

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.style
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation

tion).

The Content-Type HTTP header MUST have the value application/xml , or a media type
compatible with application/xml as specified in section 6.3.2.1 Serialization rules for XML
messages [p.44] . Other HTTP headers, such as Content-Encoding or Transfer-Encoding ,
MAY be used.

6.8.4 Serialization as "multipart/form-data"

In this serialization, for HTTP requests, the rules for constructing the HTTP request IRI defined in 6.8.1
Serialization of the instance data in parts of the HTTP request IRI [p.57] apply if the {style} property
of the Interface Operation bound has a value of "http://www.w3.org/2006/01/wsdl/style/iri" as defined in
4.2 IRI Style [p.20] .

This format is for legacy compatibility to permit the use of XForms clients with [IETF RFC 2388 [p.68]]
servers. This serialization format may only be used when binding Interface Operation whose {style} prop-
erty has a value of "http://www.w3.org/2006/01/wsdl/style/multipart" as defined in 4.3 Multipart style
[p.21] , i.e. this serialization format may only be used to serialize the HTTP request corresponding to the
initial message of an interface operation.

Specifically, for the HTTP binding defined in this section (6. WSDL HTTP Binding Extension [p.41]),
"multipart/form-data" MAY be used as a serialization format [p.43] for an input message (HTTP Request),
but MUST NOT be used as a serialization format [p.43] for an output or fault message (HTTP Response).
This format serializes the instance data in the HTTP message body, making it only suitable for HTTP
requests using methods allowing message bodies.

Each element in the sequence is serialized into a part as follow:

1. The Content-Disposition header MUST have the value form-data , and its name parame-
ter is the local name of the element.

2. The Content-Type header MUST have the value:

application/xml (or a media type compatible with application/xml) if the element
has a complex type;

application/octet-stream if the element is of type xs:base64Binary ,
xs:hexBinary , or a derived type;

text/plain if the element has a simple type; The charset MUST be set appropriately. UTF-8
or UTF-16 MUST be at least supported.

3. If the type is xs:base64Binary , xs:hexBinary , xs:anySimpleType or a derived type, the
content of the part is the content of the element. If the type is a complex type, the element is serial-
ized following the rules defined in the 6.8.3 Serialization as application/xml [p.61] .

62

6.8 Serialization Format of Instance Data

http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.style
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-InterfaceOperation.style

It is an error for the instance data [p.41] to contain elements with an xs:nil attribute whose value is
"true".

Example 6-4. Example of multipart/form-data

The following instance data of an input message:

<data>
 <town>
 <name>Fréjus</name>
 <country>France</country>
 </town>
 <date>2006-01-06</date>
</data>

with the following operation element

<operation ref=’t:data’
 whttp:location=’temperature’
 whttp:method=’POST’
 whttp:inputSerialization=’multipart/form-data’/>

will serialize the message as follow:

Content-Type: multipart/form-data; boundary=AaB03x
Content-Length: xxx

--AaB03x
Content-Disposition: form-data; name="town"
Content-Type: application/xml

<town>
 <name>Fréjus</name>
 <country>France</country>
</town>
--AaB03x
Content-Disposition: form-data; name="date"
Content-Type: text/plain; charset=utf-8

2006-01-06
--AaB03x--

6.9 Specifying the Transfer Coding

6.9.1 Description

Every Binding Message Reference and Interface Fault Reference component MAY indicate which transfer
codings, as defined in section 3.6 of [IETF RFC 2616 [p.68]], are available for this particular message.

The HTTP binding extension provides a mechanism for indicating a default value at the Binding compo-
nent and Binding Operation levels.

63

6.9 Specifying the Transfer Coding

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation

If no value is specified, no claim is being made.

6.9.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following property to the WSDL component model
(as defined in [WSDL 2.0 Core Language [p.70]]):

{http transfer coding default} OPTIONAL. A xs:string to the Binding component. This property indi-
cates the default transfer codings available for all Interface Message Reference and Interface Fault
Reference components of any Interface component that uses this Binding component. Its value is
ignored when the value of the {http version [p.46] } property is "1.0".

{http transfer coding default} OPTIONAL. A xs:string to the Binding Operation component. This
property indicates the default transfer codings available for all Binding Message Reference and
Binding Fault components of this Binding Operation component. Its value is ignored when the value
of the {http version [p.46] } property is "1.0".

{http transfer coding} OPTIONAL. A xs:string to the Binding Message Reference component. This
property indicates the transfer codings available for this Binding Message Reference component. Its
value is ignored when the value of the {http version [p.46] } property is "1.0".

Similarly, {http transfer coding} OPTIONAL, to the Binding Fault component

6.9.3 XML Representation

<description>
 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI"
 whttp:transferCodingDefault=" xs:string"? >

 <fault ref=" xs:QName"
 whttp:transferCoding=" xs:string"? >
 </fault>*

 <operation location=" xs:anyURI"?
 whttp:transferCodingDefault=" xs:string"? >
 <input messageLabel=" xs:NCName"?
 whttp:transferCoding=" xs:string"? />

 <output messageLabel=" xs:NCName"?
 whttp:transferCoding=" xs:string"? />

 </operation>
 </binding>
</description>

The XML representation for specifying the transfer coding is an OPTIONAL attribute information item
for the input , output , and fault element information items with the following Infoset properties:

A [local name] of transferCoding

64

6.9 Specifying the Transfer Coding

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Interface
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string

The XML representation for specifying the default transfer coding is an OPTIONAL attribute information
item for the binding element information item or binding ’s child operation element information
items with the following Infoset properties:

A [local name] of transferCodingDefault

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string

6.9.4 Mapping from XML Representation to Component Properties

See Table 6-9 [p.65] .

Table 6-9. Mapping from XML Representation to Interface Message Reference component Extension
Properties

Property Value

{http transfer coding default
[p.64] } of the Binding
component

The actual value of the whttp:transferCodingDefault
attribute information item of the binding element information item, if
present.

{http transfer coding default
[p.64] } of the Binding Opera-
tion component

The actual value of the whttp:transferCodingDefault
attribute information item of the operation element information
item, if present.

{http transfer coding [p.64] }
of the Binding Message
Reference component

The actual value of the whttp:transferCoding attribute informa-
tion item of the input or output element information item, if present.

{http transfer coding [p.64] }
of the Binding Fault compo-
nent

The actual value of the whttp:transferCoding attribute informa-
tion item of the fault element information item, if present.

6.10 Specifying the Use of HTTP Cookies

6.10.1 Description

Every Binding component MAY indicate whether HTTP cookies (as defined by [IETF RFC 2965 [p.69]])
are used for some or all of operations of the interface that this binding applies to.

65

6.10 Specifying the Use of HTTP Cookies

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding

6.10.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following property to the WSDL component model
(as defined in [WSDL 2.0 Core Language [p.70]]):

{http cookies} REQUIRED. A xs:boolean to the Binding component.

6.10.3 XML Representation

<description>
 <binding name=" xs:NCName" interface=" xs:QName"? type=" xs:anyURI"
 whttp:cookies=" xs:boolean"? >
 </binding>
</description>

The XML representation for specifying the use of HTTP cookies is an OPTIONAL attribute information
item with the following Infoset properties:

A [local name] of cookies

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:boolean

6.10.4 Mapping from XML Representation to Component Properties

See Table 6-10 [p.66] .

Table 6-10. Mapping from XML Representation to Binding component Extension Properties

Property Value

{http cookies [p.66]
}

The actual value of the whttp:cookies attribute information item; otherwise,
"false".

6.11 Specifying HTTP Access Authentication

6.11.1 Description

Every Endpoint component MAY indicate the use of an HTTP access authentication mechanism (as
defined by [IETF RFC 2616 [p.68]]) for the endpoint described.

This binding extension specification allows the authentication scheme and realm to be specified.

66

6.11 Specifying HTTP Access Authentication

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Endpoint

6.11.2 Relationship to WSDL Component Model

The HTTP binding extension specification adds the following property to the WSDL component model
(as defined in [WSDL 2.0 Core Language [p.70]]):

{http authentication scheme} OPTIONAL. A xs:token with one of the values "basic" or "digest", to
the Endpoint component, corresponding to the HTTP authentication scheme used. When present, this
property indicates the authentication scheme in use: "basic" indicates the Basic Access Authentica-
tion scheme defined in [IETF RFC 2617 [p.68]], and "digest" indicates the Digest Access Authenti-
cation scheme as defined in [IETF RFC 2617 [p.68]].

{http authentication realm} OPTIONAL. A xs:string to the Endpoint component. It corresponds to
the realm authentication parameter defined in [IETF RFC 2617 [p.68]]. If the {http authentication
scheme [p.67] } property is present, then this property MUST be present.

6.11.3 XML Representation

<description>
 <service>
 <endpoint name=" xs:NCName" binding=" xs:QName" address=" xs:anyURI"? >
 whttp:authenticationType=" xs:token"?
 whttp:authenticationRealm=" xs:string"? />
 </endpoint>
 </service>
</description>

The XML representation for specifying the use of HTTP access authentication is two OPTIONAL
attribute information items with the following Infoset properties:

An OPTIONAL authenticationType attribute information item with the following Infoset
properties:

A [local name] of authenticationType

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:token where the allowed token values are "basic" and "digest".

An OPTIONAL authenticationRealm attribute information item with the following Infoset
properties:

A [local name] of authenticationRealm

A [namespace name] of "http://www.w3.org/2006/01/wsdl/http"

A type of xs:string

67

6.11 Specifying HTTP Access Authentication

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Endpoint
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Endpoint

6.11.4 Mapping from XML Representation to Component Properties

See Table 6-11 [p.68] .

Table 6-11. Mapping from XML Representation to Endpoint component Extension Properties

Property Value

{http authentication
scheme [p.67] }

The actual value of the whttp:authenticationType attribute information
item, if present.

{http authentication
realm [p.67] }

The actual value of the whttp:authenticationRealm attribute information
item, if present; otherwise, if the whttp:authenticationType attribute
information item is present, "" (the empty value).

6.12 Conformance

An element information item whose namespace name is "http://www.w3.org/2006/01/wsdl" and whose
local part is description conforms to this binding extension specification if the element information
items and attribute information items whose namespace is http://www.w3.org/2006/01/wsdl/http conform
to the XML Schema for that element or attribute as defined by this specification and additionally adheres
to all the constraints contained in this specification.

7. References

7.1 Normative References

[Canonical XML]
Canonical XML, J. Boyer, Author. World Wide Web Consortium, 15 March 2001. This version of the
Canonical XML Recommendation is http://www.w3.org/TR/2001/REC-xml-c14n-20010315. The
latest version of Canonical XML is available at http://www.w3.org/TR/xml-c14n.

[IETF RFC 2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner, Author. Internet Engineering
Task Force, June 1999. Available at http://www.ietf.org/rfc/rfc2119.txt.

[IETF RFC 2388]
Returning Values from Forms: multipart/form-data, L. Masinter, Author. Internet Engineering Task
Force, August 1998. Available at http://www.ietf.org/rfc/rfc2388.txt.

[IETF RFC 2616]
Hypertext Transfer Protocol -- HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee, Authors. Internet Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

[IETF RFC 2617]
HTTP Authentication: Basic and Digest Access Authentication, J. Franks, P. Hallam-Baker, J.
Hostetler, S. Lawrence, P. Leach, A. Luotonen, L. Stewart, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

68

7. References

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/xml-c14n
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2388.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt

[IETF RFC 2818]
HTTP Over TLS, E. Rescorla, Author. Internet Engineering Task Force, May 2000. Available at
http://www.ietf.org/rfc/rfc2818.txt.

[IETF RFC 2965]
HTTP State Management Mechanism, D. Kristol, L. Montulli Authors. Internet Engineering Task
Force, October 2000. Available at http://www.ietf.org/rfc/rfc2965.txt.

[IETF RFC 3023]
XML Media Types, M. Murata, S. St. Laurent, D. Kohn, Authors. Internet Engineering Task Force,
January 2001. Available at http://www.ietf.org/rfc/rfc3023.txt.

[IETF RFC 3205]
On the use of HTTP as a Substrate, K. Moore, Authors. Internet Engineering Task Force, February
2002. Available at http://www.ietf.org/rfc/rfc3205.txt.

[IETF RFC 3986]
Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3986.txt.

[IETF RFC 3987]
Internationalized Resource Identifiers (IRIs), M. Duerst, M. Suignard, Authors. Internet Engineering
Task Force, January 2005. Available at http://www.ietf.org/rfc/rfc3987.txt.

[XForms 1.0]
XForms 1.0, M. Dubinko, et al., Editors. World Wide Web Consortium, 14 October 2003. This
version of the XForms 1.0 Recommendation is http://www.w3.org/TR/2003/REC-xforms-20031014/.
The latest version of XForms 1.0 is available at http://www.w3.org/TR/xforms/.

[SOAP 1.2 Part 1: Messaging Framework]
SOAP Version 1.2 Part 1: Messaging Framework, M. Gudgin, M. Hadley, N. Mendelsohn, J-J.
Moreau, H. Frystyk Nielsen, Editors. World Wide Web Consortium, 24 June 2003. This version of
the "SOAP Version 1.2 Part 1: Messaging Framework" Recommendation is
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/. The latest version of "SOAP Version 1.2
Part 1: Messaging Framework" is available at http://www.w3.org/TR/soap12-part1/.

[SOAP 1.2 Part 2: Adjuncts]
SOAP Version 1.2 Part 2: Adjuncts, M. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, and H.
Frystyk Nielsen, Editors. World Wide Web Consortium, 7 May 2003. This version of the "SOAP
Version 1.2 Part 2: Adjuncts" Recommendation is
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/. The latest version of "SOAP Version 1.2
Part 2: Adjuncts" is available at http://www.w3.org/TR/soap12-part2/.

[Web Architecture]
Architecture of the World Wide Web, Volume One, I. Jacobs, and N. Walsh, Editors. World Wide
Web Consortium, 15 December 2004. This version of the "Architecture of the World Wide Web,
Volume One" Recommendation is http://www.w3.org/TR/2004/REC-webarch-20041215/. The latest
version of "Architecture of the World Wide Web, Volume One" is available at
http://www.w3.org/TR/webarch/.

[Web Services Architecture]
Web Services Architecture, David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferris, David Orchard, Editors. World Wide Web Consortium, 11 February 2004.
This version of the "Web Services Architecture" Working Group Note is
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/. The latest version of "Web Services Archi-
tecture" is available at http://www.w3.org/TR/ws-arch/.

69

7.1 Normative References

http://www.ietf.org/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2965.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3205.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/webarch/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/

[WSDL 2.0 Core Language]
Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language, R. Chinnici, M.
Gudgin, J-J. Moreau, S. Weerawarana, Editors. World Wide Web Consortium, 6 January 2006. This
version of the "Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language"
Specification is available is available at http://www.w3.org/TR/2006/CR-wsdl20-20060106. The
latest version of "Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language"
is available at http://www.w3.org/TR/wsdl20.

[XML 1.0]
Extensible Markup Language (XML) 1.0 (Third Edition), T. Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, and F. Yergeau, Editors. World Wide Web Consortium, 4 February 2004. This version of
the XML 1.0 Recommendation is http://www.w3.org/TR/2004/REC-xml-20040204/. The latest
version of "Extensible Markup Language (XML) 1.0" is available at
http://www.w3.org/TR/REC-xml.

[XML Information Set]
XML Information Set (Second Edition), J. Cowan and R. Tobin, Editors. World Wide Web Consor-
tium, 4 February 2004. This version of the XML Information Set Recommendation is
http://www.w3.org/TR/2004/REC-xml-infoset-20040204. The latest version of XML Information Set
is available at http://www.w3.org/TR/xml-infoset.

[XML Schema Structures]
XML Schema Part 1: Structures Second Edition, H. Thompson, D. Beech, M. Maloney, and N.
Mendelsohn, Editors. World Wide Web Consortium, 28 October 2004. This version of the XML
Schema Part 1 Recommendation is http://www.w3.org/TR/2004/REC-xmlschema-1-20041028. The
latest version of XML Schema Part 1 is available at http://www.w3.org/TR/xmlschema-1.

[XML Schema Datatypes]
XML Schema Part 2: Datatypes Second Edition, P. Byron and A. Malhotra, Editors. World Wide
Web Consortium, 28 October 2004. This version of the XML Schema Part 2 Recommendation is
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028. The latest version of XML Schema Part
2 is available at http://www.w3.org/TR/xmlschema-2.

7.2 Informative References

[SOAP Message Transmission Optimization Mechanism]
SOAP Message Transmission Optimization Mechanism, N. Mendelsohn, M. Nottingham, and H.
Ruellan, Editors. World Wide Web Consortium, W3C Recommendation, 25 January 2005. This
version of SOAP Message Transmission Optimization Mechanism is
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/. The latest version of the "SOAP
Message Transmission Optimization Mechanism" document is available from
http://www.w3.org/TR/soap12-mtom/.

[WSA 1.0 Core]
Web Services Addressing 1.0 - Core , M. Gudgin, M. Hadley, Editors. World Wide Web Consortium,
17 August 2005. This version of Web Services Addressing 1.0 - Core is
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/ The latest version of the "Web Services
Addressing 1.0 - Core" document is available from http://www.w3.org/TR/ws-addr-core.

[WSDL 2.0 Primer]
Web Services Description Language (WSDL) Version 2.0 Part 0: Primer , D.Booth, C.K. Liu ,
Editors. World Wide Web Consortium, 6 January 2006. This version of the "Web Services Descrip-

70

7.2 Informative References

http://www.w3.org/TR/2006/CR-wsdl20-20060106
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/2005/CR-ws-addr-core-20050817/
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060106

tion Language (WSDL) Version 2.0 Part 0: Primer" Specification is available at
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060106. The latest version of "Web Services
Description Language (WSDL) Version 2.0 Part 0: Primer" is available at
http://www.w3.org/TR/wsdl20-primer.

A. Acknowledgements (Non-Normative)
This document is the work of the W3C Web Service Description Working Group.

Members of the Working Group are (at the time of writing, and by alphabetical order): Charlton Barreto
(Adobe Systems Inc.), Allen Brookes (Rogue Wave Softwave), Dave Chappell (Sonic Software), Helen
Chen (Agfa-Gevaert N. V.), Roberto Chinnici (Sun Microsystems), Kendall Clark (University of Mary-
land), Glen Daniels (Sonic Software), Paul Downey (British Telecommunications), Youenn Fablet
(Canon), Hugo Haas (W3C), Tom Jordahl (Macromedia), Anish Karmarkar (Oracle Corporation), Jacek
Kopecky (DERI Innsbruck at the Leopold-Franzens-Universität Innsbruck, Austria), Amelia Lewis
(TIBCO Software, Inc.), Michael Liddy (Education.au Ltd.), Kevin Canyang Liu (SAP AG), Jonathan
Marsh (Microsoft Corporation), Josephine Micallef (SAIC - Telcordia Technologies), Jeff Mischkinsky
(Oracle Corporation), Dale Moberg (Cyclone Commerce), Jean-Jacques Moreau (Canon), Mark Notting-
ham (BEA Systems, Inc.), David Orchard (BEA Systems, Inc.), Vivek Pandey (Sun Microsystems), Bijan
Parsia (University of Maryland), Gilbert Pilz (BEA Systems, Inc.), Tony Rogers (Computer Associates),
Arthur Ryman (IBM), Adi Sakala (IONA Technologies), Asir Vedamuthu (Microsoft Corporation),
Sanjiva Weerawarana (WSO2), Ümit Yalçınalp (SAP AG).

Previous members were: Lily Liu (webMethods, Inc.), Don Wright (Lexmark), Joyce Yang (Oracle
Corporation), Daniel Schutzer (Citigroup), Dave Solo (Citigroup), Stefano Pogliani (Sun Microsystems),
William Stumbo (Xerox), Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler Research and
Technology), Tim Finin (University of Maryland), Laurent De Teneuille (L’Echangeur), Johan Pauhlsson
(L’Echangeur), Mark Jones (AT&T), Steve Lind (AT&T), Sandra Swearingen (U.S. Department of
Defense, U.S. Air Force), Philippe Le Hégaret (W3C), Jim Hendler (University of Maryland), Dietmar
Gaertner (Software AG), Michael Champion (Software AG), Don Mullen (TIBCO Software, Inc.), Steve
Graham (Global Grid Forum), Steve Tuecke (Global Grid Forum), Michael Mahan (Nokia), Bryan
Thompson (Hicks & Associates), Ingo Melzer (DaimlerChrysler Research and Technology), Sandeep
Kumar (Cisco Systems), Alan Davies (SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne (Elec-
tronic Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA Technologies), Mike McHugh
(W. W. Grainger), Michael Mealling (Verisign), Waqar Sadiq (Electronic Data Systems), Yaron Goland
(BEA Systems, Inc.), Ümit Yalçınalp (Oracle Corporation), Peter Madziak (Agfa-Gevaert N. V.),
Jeffrey Schlimmer (Microsoft Corporation), Hao He (The Thomson Corporation), Erik Ackerman
(Lexmark), Jerry Thrasher (Lexmark), Prasad Yendluri (webMethods, Inc.), William Vambenepe
(Hewlett-Packard Company), David Booth (W3C), Sanjiva Weerawarana (IBM), Charlton Barreto
(webMethods, Inc.), Asir Vedamuthu (webMethods, Inc.), Igor Sedukhin (Computer Associates), Martin
Gudgin (Microsoft Corporation), Rebecca Bergersen (IONA Technologies), Ugo Corda (SeeBeyond).

The people who have contributed to discussions on www-ws-desc@w3.org are also gratefully acknowl-
edged.

71

A. Acknowledgements (Non-Normative)

http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/2002/ws/desc/
http://lists.w3.org/Archives/Public/www-ws-desc/

B. Component Summary (Non-Normative)
Table B-1 [p.72] lists all the components in the WSDL 2.0 Adjuncts abstract Component Model, and all
their properties.

Table B-1. Summary of WSDL 2.0 Adjuncts Components and their Properties

Component Defined Properties

Binding

{http transfer coding default [p.64] }, {http cookies [p.66] }, {http method default
[p.47] }, {http query parameter separator default [p.48] }, {http version [p.46] },
{soap mep default [p.29] }, {soap modules [p.31] }, {soap underlying protocol
[p.27] }, {soap version [p.26] }

Binding Fault
{http error status code [p.55] }, {http headers [p.52] }, {http transfer coding [p.64]
}, {soap fault code [p.28] }, {soap fault subcodes [p.28] }, {soap headers [p.34] },
{soap modules [p.31] }

Binding Fault
Reference

{soap modules [p.31] }

Binding Message
Reference

{http headers [p.51] }, {http transfer coding [p.64] }, {soap headers [p.34] }, {soap
modules [p.31] }

Binding Operation

{http location [p.47] }, {http transfer coding default [p.64] }, {http fault serializa-
tion [p.48] }, {http input serialization [p.48] }, {http location ignore uncited [p.59]
}, {http method [p.48] }, {http output serialization [p.48] }, {http query parameter
separator [p.48] }, {soap action [p.29] }, {soap mep [p.29] }, {soap modules [p.31]
}

Endpoint {http authentication realm [p.67] }, {http authentication scheme [p.67] }

HTTP Header
[p.52]

{name [p.52] }, {parent [p.52] }, {required [p.52] }, {type definition [p.52] }

Interface Operation {rpc signature [p.18] }, {safety [p.15] }

SOAP Header
Block [p.34]

{element declaration [p.34] }, {mustUnderstand [p.34] }, {parent [p.35] },
{required [p.35] }

SOAP Module
[p.31]

{parent [p.32] }, {ref [p.31] }, {required [p.32] }

Property Where Defined

element declara-
tion

SOAP Header Block.{element declaration [p.34] }

http authentication
realm

Endpoint.{http authentication realm [p.67] }

72

B. Component Summary (Non-Normative)

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Binding
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFault
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingFaultReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingMessageReference
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-BindingOperation
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Endpoint
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-InterfaceOperation

http authentication
scheme

Endpoint.{http authentication scheme [p.67] }

http cookies Binding.{http cookies [p.66] }

http error status
code

Binding Fault.{http error status code [p.55] }

http fault serializa-
tion

Binding Operation.{http fault serialization [p.48] }

http headers
Binding Fault.{http headers [p.52] }, Binding Message Reference.{http headers
[p.51] }

http location ignore
uncited

Binding Operation.{http location ignore uncited [p.59] }

http method Binding Operation.{http method [p.48] }

http method default Binding.{http method default [p.47] }

http output serial-
ization

Binding Operation.{http output serialization [p.48] }

http query parame-
ter separator

Binding Operation.{http query parameter separator [p.48] }

http transfer coding
Binding Fault.{http transfer coding [p.64] }, Binding Message Reference.{http
transfer coding [p.64] }

http version Binding.{http version [p.46] }

mustUnderstand SOAP Header Block.{mustUnderstand [p.34] }

name HTTP Header.{name [p.52] }

parent
HTTP Header.{parent [p.52] }, SOAP Header Block.{parent [p.35] }, SOAP
Module.{parent [p.32] }

ref SOAP Module.{ref [p.31] }

required
HTTP Header.{required [p.52] }, SOAP Header Block.{required [p.35] }, SOAP
Module.{required [p.32] }

rpc signature Interface Operation.{rpc signature [p.18] }

safety Interface Operation.{safety [p.15] }

soap action Binding Operation.{soap action [p.29] }

soap fault code Binding Fault.{soap fault code [p.28] }

soap fault subcodes Binding Fault.{soap fault subcodes [p.28] }

73

B. Component Summary (Non-Normative)

soap headers
Binding Fault.{soap headers [p.34] }, Binding Message Reference.{soap headers
[p.34] }

soap mep Binding Operation.{soap mep [p.29] }

soap modules
Binding.{soap modules [p.31] }, Binding Fault.{soap modules [p.31] }, Binding
Fault Reference.{soap modules [p.31] }, Binding Message Reference.{soap
modules [p.31] }, Binding Operation.{soap modules [p.31] }

soap underlying
protocol

Binding.{soap underlying protocol [p.27] }

soap version Binding.{soap version [p.26] }

type definition HTTP Header.{type definition [p.52] }

C. Part 2 Change Log (Non-Normative)

Date Author Description

20051122 HH
LC359: moved transfer coding from binding fault ref to binding fault in XML
representations

20051117 JJM LC358: fixed formatting in some examples.

20051113 HH LC359: moved transfer coding from binding fault ref to binding fault

20051111 HH Added SOAP MEP / WSDL MEP mapping as per resolution

20051111 HH LC333: implemented resolution to accommodate interfaceless bindings

20051111 HH LC362: added URI to fault propagation rules

20051111 HH LC337: added media type range

20051111 HH LC305: added reference to BNF pseudo-schemas in Part 1

20051111 AGR Added assertion tables. Added Fault Propagation Rule assertions.

20051110 HH LC304: implemented proposal

20051110 HH
LC345: allowed POST as application/x-www-form-urlencoded and reorganized
HTTP binding serializations

20051109 HH LC301: specified that {soap action} is for the initial message of an operation

20051027 HH LC339: added required attribute to wsoap:header and whttp:header

20051027 HH LC340: clarified cardinality of headers

20051027 HH
LC331: if the {message content model} property is "#any" in the HTTP binding,
then the payload MUST be any one XML element.

74

C. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC359
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC358
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC359
http://lists.w3.org/Archives/Public/www-ws-desc/2005Nov/0022.html
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC333
http://lists.w3.org/Archives/Public/www-ws-desc/2005Oct/0051.html
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC362
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC337
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC305
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC304
http://lists.w3.org/Archives/Public/www-ws-desc/2005Oct/0063.html
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC345
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC301
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC339
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC340
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC331

20051027 HH
LC330: operation styles mandate that the {message content model} of the opera-
tion’s messages is "#element"

20051027 HH LC329: we do now have default rules for binding faults

20051027 HH LC327: made both HTTP authentication properties optional

20051027 HH LC326: changed type of {http authentication scheme}

20051027 HH LC315: fixed HTTP header serialization and IRI identification.

20051020 HH LC319: implemented detailed resolution.

20051020 HH LC342: fixed typos

20051020 HH LC349: improved section 2’s introduction

20051013 HH LC334: removed HTTP error reason phrase

20051013 HH Fixed mark-up for declaring {soap modules}, {soap headers} and {http headers}

20051013 HH LC323: removed text on HTTP Accept headers.

20051013 HH LC321: clarified {soap mep} error.

20051012 RRC
LC344(5): changed order of union member types in the schema for the wrpc:signa-
ture extension

20050923 HH LC341: renamed {element} into {element declaration} and fixed typo

20050923 HH LC318: reorganized default declarations in bindings

20050923 HH LC320: added {parent} property to nested components

20050923 HH
LC317: clarified applicability of application/x-www-url-encoded and multi-
part/form-data

20050923 HH LC314: completed introduction

20050923 HH LC306: wsdlx declaration clarification.

20050923 HH LC322: section 6.3 Default Binding Rules clarification.

20050923 HH
LC324: fixed queryParameterSeparatorDefault and queryParameterSeparator defi-
nitions.

20050923 HH LC325: fixed typo in transferCodingDefault definition.

20050923 HH
LC313: made {soap action}, {http location}, {http error reason phrase}, {http
transfer coding} properties optional; did not do {soap fault subcodes} because of
LC319.

20050923 HH LC312: fixed typo in Section 2. Predefined Message Exchange Patterns.

75

C. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC330
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC329
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC327
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC326
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC315
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC319
http://lists.w3.org/Archives/Public/www-ws-desc/2005Sep/0012.html
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC342
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC349
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC334
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC321
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC321
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC344
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC341
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC318
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC320
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC317
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC314
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC306
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC322
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC324
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC325
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC313
http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC312

20050902 RRC
LC316: Added definition of wrpc namespace in section 1.1 and changed wording
of reference to example 4-1 in section 4.1.

20050728 HH
LC76d: spelled out conflict between mustUnderstand use and schema definition;
clarified mustUnderstand definition.

20050728 HH Clarified {soap action} scope for SOAP 1.2 binding.

20050728 HH LC76c: added security consideration section.

20050725 RRC LC75f: allowed extension attributes on RPC-style input/output elements.

20050707 aal Modified 2.2.2 per text supplied by Jean-Jacques.

20050616 AGR Fixed component table.

20050616 JJM
Added markup to list all the components and properties used in Part 2 (although
this currently [wrongly] shows those of Part 1).

20050616 JJM
Fixed wrong component names for properties. Renamed HTTP Header Block to
HTTP Header.

20050614 RRC LC76a: Added comment requested by reviewer.

20050615 JJM
Further pass at adding markup for properties. Fixed issues with entities preventing
validation.

20050615 JJM Added <propdef> and <prop> markup around properties.

20050614 JJM Finished adding <comp> markup around components.

20050613 JJM Started adding <comp> markup around components.

20050613 JJM LC122: replaced "binding" by "binding extension" where appropriate.

20050613 JJM LC98: {soap mep} only applies to SOAP 1.2.

20050613 RRC LC74c: changed documentation element cardinality to zero or more.

20050606 HH LC79 & LC102: added editors note about one-way MEP defaulting for SOAP 1.2

20050606 HH LC130: wsoap:code is now optional, and aligned whttp:code

20050602 HH LC75c: introduced wsdlx namespace, moved safety to Part 2.

20050527 HH LC74a: switched to IRIs

20050527 HH LC80: defined fragment identifiers for defined components as proposed

20050520 JJM
LC97: Fixed specifying default values throughout the spec. Resolved incoherencies
along the way.

20050519 aal added template to guide readers when defining new message exchange patterns.

76

C. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/5/lc-issues/issues.html#LC316
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75f
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC122
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC98
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC74c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC79
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC102
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC130
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC74a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC80
http://lists.w3.org/Archives/Public/www-ws-desc/2005May/0035.html
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC97

20050512 HH LC110: referenced RFC2616 for whttp:version

20050512 HH
LC77a: clarified namespace and local name serialization in applica-
tion/x-www-url-encoded serialization

20050509 RRC
LC118: Added clarification to step 2 of the algorithm to compute the function
signature for an operation that uses the wrpc:signature extension.

20050509 RRC LC89a: Added conformance requirement for RPC style.

20050505 aal LC52c: state that soap faults have no reasonable default.

20050505 aal
LC76a: allow extensions to override faults in rulesets; LC76b: define "propagate"
in rulesets.

20050429 RRC LC97: Made the setting of default values for properties more consistent.

20050429 RRC LC75g: RPC should allows element wildcards

20050422 HH LC75d: RPC style; same input and output elements need named type

20050420 JJM Fixed typos in RPC section (part of LC78).

20050413 AV
LC76d: made changes to wsoap:header and whttp:header (removed
required and changed default binding rules)

20050412 RRC LC75h: added note on multiple return values in rpc style

20050415 HH LC28: ignoring transfer coding for HTTP/1.0

20050408 HH
LC17: added order preservation in application/x-www-url-encoded seri-
alization

20050408 HH LC69a: added whttp:queryParameterSeparator

20050408 HH LC47: added whttp:reasonPhrase

20050408 HH LC76d: added whttp:header

20050408 HH
Added wsoap:module at the Binding Fault component model as per 2005-04-07
telcon

20050407 HH LC7: fixed RPC style glitches

20050406 HH LC76d: added wsoap:header

20050331 HH
LC106: URI and Multipart styles are placing restrictions on the initial message of
the MEP

20050331 HH LC111: added reference to section 8 of RFC3205 for use of HTTP error codes

20050321 HH
LC48b: added link between WSDL and SOAP 1.2 MEPs in predefined MEPs
section

77

C. Part 2 Change Log (Non-Normative)

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC110
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC77a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC118
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC89a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC97
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75g
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC28
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC17
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC69a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC47
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76d
http://lists.w3.org/Archives/Public/www-ws-desc/2005Apr/0037.html
http://lists.w3.org/Archives/Public/www-ws-desc/2005Apr/0037.html
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC7
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC76d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC106
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC111
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC48b

20050321 HH LC74d: removed constraint on LocalPart of the output element in RPC style

20050321 HH LC108: fixed typo and added missing {soap modules} XML mapping

20050321 HH LC88: fixed typo

20050317 HH LC61a: Incorporated RPC style

20050316 HH LC61a: Merged the old part 2 and part 3 documents

C.1 WSDL 2.0 Extensions Change Log

Date Author Description

20050613 JJM LC122: Replaced "binding" by "binding extension" where appropriate.

20050222 aal Implement editorial changes for LC39, LC40, LC48c.

20050220 AGR
LC50: Adopt proposal for definition of "node", adding "Note:" before second
sentence.

20041209 aal add clarifying language for fault propagation, per LC54/76.

20040713 aal
implement editorial changes requested after review by GlenD, in application data
feature and module.

20040713 aal
address issues 233 & 112 all at once, by increasing level of all divs, adding new
intro div, adding new div to contain features, renaming spec. Lotsa changes, what
fun.

20040713 aal s/Label/Message Label/g and s/{label}/{message label}/g. issue 230.

20040713 aal
replace "fault generation" with "fault propagation" (in almost all cases; one case of
"generate" remains to indicate that it ends an exchange). issue 234.

20040713 aal
add language to introduction describing relationship between these MEPs and the
MEPs defined by SOAP 1.2 (issue 232). This replaces the language found two
items down (issue 191).

20040713 aal add (hereafter, simply ’patterns’) to intro (issue 231).

20040610 aal
add language to introduction describing relationship between these MEPs and the
MEPs defined by SOAP 1.2 (issue 191).

20040225 aal add in-optional-out per minutes of 20 feb 2004 telecon

20040212 aal
change {messageReference} to {label} and "Message Reference component" to
"Label component" per 20040212 teleconference

20040205 aal change all ’A’ and ’B’ message labels into ’Out’ or ’In’, depending upon direction.

20040205 aal s/message pattern/message exchange pattern/gi

78

C.1 WSDL 2.0 Extensions Change Log

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC74d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC108
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC88
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC61a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC61a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC122
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC50
http://lists.w3.org/Archives/Public/www-ws-desc/2004Nov/0070.html

20031204 jcs
Removed change marks; note that some were on div2 tag and did not show when
transformed into HTML.

20031204 jcs
Per 4 Dec 2003 telecon, decided to rename ’Asynchronous Out-In’ pattern to
’Output-Optional-Input’.

20031105 aal Fix titles of added patterns. Move them to be in conjunction with similar patterns.

20031022 aal
Per action item from October 16 teleconference, added the three patterns using
message-triggers-fault as published on the mailing list (robust-in-only,
robust-out-only, asynch-out-in).

20031022 aal
Added internal linkage (using specref) from patterns to the fault rulesets which
they use.

20031022 aal
Per 9 and 16 Oct 2003 teleconferences, marked in-multi-out and out-multi-in
patterns deleted.

20031022 aal
Per 16 Oct 2003 teleconference, added a paragraph/sentence stating that generation
of a fault terminates an exchange.

20031007 JCS
Per 2 Oct 2003 teleconference, changed "broadcast" to "multicast" in the introduc-
tion.

20030922 JCS
Per 22 Sep 2003 meeting in Palo Alto, CA, removed "Pattern Review" editorial
note; added specific editorial notes for In-Multi-Out and Out-Multi-In.

20030911 RRC
Changed the "name" property of the message reference component to
"messageReference".

20030904 JCS Incorporated clarifications suggested by W3C\David Booth.

20030801 JCS Per 30 July meeting, added recommendations from patterns task force.

20030612 AAL Added fault generation rulesets and references to them from patterns.

20030313 MJG Changed to Part 2 (from Part 3)

20030306 JCS Proposed name for MEP7.

20030305 JCS
Per 4 Mar 03 meeting, renamed ’message exchange pattern’ to ’message pattern’ or
’pattern’, added pattern for request-response, added ednote about review of
patterns.

20030217 MJG Fixed some issues with entities and validity errors WRT ulists

20030212 JCS Initial draft

79

C.1 WSDL 2.0 Extensions Change Log

C.2 WSDL 2.0 Bindings Change Log

Date Author Description

20050310 JJM Replaced <definitions> with <description>.

20050310 JJM Fixed missing fault pseudo-schema.

20050301 RRC
LC55: enabled use of whttp:transferCoding on Binding Fault Reference compo-
nents.

20050301 RRC LC55: enabled use of wsoap:module on Binding Fault Reference components.

20050221 HH LC48b: highlighted relationship between SOAP and WSDL MEPs

20050211 HH LC49: added conformance section to each of the bindings

20050120 HH LC75q: removed wsdls namespace and XML 1.1 reference; limiting to XML 1.0

20050120 HH LC21: implemented resolution from 16 Dec 2004 WS Description WG telcon

20041209 HH LC86: completed pseudo-schemas with missing F&P occurrences

20041209 HH LC85: clarified mapping of messages in an operation to HTTP request/response

20041209 HH
LC30: removed instances of provider/requester agents and replaced them by HTTP
server/client

20041209 HH LC29d: clarified modification of default of SOAP serialization rules

20041208 AV
Introduced SOAP version independent WSDL SOAP Binding. Added two new
sections, "Specifying the SOAP Version" and "SOAP 1.2 Binding". Plus, lots of
shuffling.

20041027 HH LC57 &LC58: fixed typos

20041027 HH LC51

20041027 HH LC45: {http location} may or may not be a template

20041027 HH LC44: URL serialization expressed in terms of the component model

20041027 HH
LC29e: URL serialization: disallowing nil elements in certain cases; clarifying that
empty elements are OK

20041001 HH LC29g: switched 3.8 (serializations) and 3.9 (styles)

20041001 HH LC29f: it is an error to have nil elements in an instance data for multipart/form-data

20041001 HH LC29a & LC29c: indicated that there is no suitable default fault code

20041001 HH LC15: moved {http location} under bulleted list in section 2

20040920 HH LC36 & LC2: added wsdls:* and xs:* in SOAP binding

80

C.2 WSDL 2.0 Bindings Change Log

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC55
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC55
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC48b
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC49
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC75q
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC21
http://lists.w3.org/Archives/Public/www-ws-desc/2004Dec/0026.html
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC86
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC85
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC30
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29d
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC57
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC58
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC51
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC45
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC44
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29e
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29g
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29f
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29a
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC29c
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC15
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC36
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC2

20040920 HH LC32: fixed errors due to operation name restriction in serialization examples

20040920 HH LC36: added wsdls:* and xs:* in HTTP binding

20040920 HH LC37: corrected rules to set operation properties values in HTTP binding

20040920 HH LC33: removed "default" in SOAP binding’s HTTP method selection

20040920 HH LC13: removed remaining mentions of HTTP Operation Component

20040920 HH LC12: added whttp:location in SOAP XML summary

20040909 HH LC10: fixed typo in example 3.3

20040909 HH
LC11: made default attributes consistent with the following form: wbind-
ing:fooDefault

20040730 HH Removed property on wsoap:module in pseudo-schema.

20040730 HH Removed AD Feature HTTP serialization.

20040729 HH Added AD Feature support in HTTP binding.

20040727 HH Clarified interaction between SOAP binding and HTTP binding properties

20040727 HH Renamed http prefix whttp

20040727 SW Implemented Umit’s proposal to mark MTOM as one optimization mechanism.

20040726 HH
Restricted URI style with regards to QNames and added trailing / in URL-encoded
syntax

20040723 HH Addressed issue 246: limited MEP to In-Out, In-Only and Robust In-Only

20040723 HH Addressed issue 226.

20040723 HH
Addressed 249: major reorganization of the HTTP binding to be presented in a
functional way like the SOAP binding rather than in a syntactical way.

20040722 SW
Moved SOAP binding syntax summary to the top per request. Also fixed the value
of the binding/@type property in the pseudo-schema to show that its a SOAP
binding.

20040722 HH
Added HTTP error code attribute on fault binding. Added relationship between
instance data and properties in the component model. Addresses issue 166.

20040722 HH Renamed SOAP protocol into underlying protocol.

20040721 HH Set the {type} property of binding for HTTP binding.

20040721 HH Fixes for issue 177.

20040720 HH Cross-referenced Part 1 properties.

81

C.2 WSDL 2.0 Bindings Change Log

http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC32
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC36
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC37
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC33
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC13
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC12
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC10
http://www.w3.org/2002/ws/desc/4/lc-issues/issues.html#LC11

20040720 HH
Specified default serialization format for HTTP binding, as well as made clear how
the defined serialization formats apply constraints on interface operation styles

20040705 JJM Added note to indicate only one element per SOAP body.

20040702 SW
Corrected how the SOAP binding is indicated .. I had forgotten about
binding/@type!

20040625 SW Made pseudo-syntax consistent with part1

20040624 SW Update the rest of the SOAP binding stuff and consistified everything.

20040624 SW Cleaned up how SOAP modules were described. Added default SOAP MEP stuff.

20040623 SW Added default binding rules about HTTP URI generation.

20040623 SW
Added default binding rules about SOAP MEP selection and HTTP Method selec-
tion.

20040623 SW Fixed up soapaction default rules

20040623 SW Allowed use of MTOM for payload serialization

20040623 SW Fixed up the wsoap:protocol section

20040618 SW Re-introduced AII and EII entity refs.

20040618 SW Made soap:module compose with nearest-wins rule.

20040606 DO
Cleanup on http binding section - had missed some properties. completed removal
of @separator

20040604 DO
Major rewrite of http binding. Moved to component model, added http properties,
added input/output serialization, removed @separator, added self as editor

20040526 SW Removed wsoap:address

20040526 SW Editorial/small corrections per F2F decisions

20040526 SW Made soap binding be mostly attribute based per F2F decision

20040519 SW
removed spurious fault element inside binding/operation/{in,out}put from syntax
summary

20040519 SW Put in wsoap:module at operation level in the syntax summary (was missing)

20040519 SW Removed old SOAP binding text

20040519 SW Removed wsoap:header

20040519 JJM Added SOAP Address section

20040519 JJM Added SOAP Operation section

82

C.2 WSDL 2.0 Bindings Change Log

20040519 JJM Replace reference to "XML" by "XML1.0"

20040519 JJM Added SOAP Fault section

20040519 JJM Added SOAP Header section

20040519 JJM Added SOAP Module section

20040516 SW Finished writing up soap:binding

20040516 SW Added myself as an editor.

20040514 SW Added default binding rules.

20040514 SW Commented out old totally out of date SOAP binding.

20040514 JJM
Rework the binding and module sections. Reindent to match the structure of the
HTTP binding.

20040511 JJM Updated SOAP binding pseudo-schema, according to telcon 20040506.

20040511 JJM Updated SOAP binding introduction.

20040401 JJM Fixed one remaining occurrence of "verb" (instead of "method").

20040326 JJM
Sanitized ednotes. Added new ednotes indicating the SOAP binding needs work
and the HTTP binding is (mostly) OK.

20040326 JJM Added Philippe’s note on URIPath, as per telcon 20040325.

20040305 JJM
Removed the archaic MIME binding, now superseded by the HTTP binding
anyway.

20040305 JJM Included Philippe’s changes to the HTTP binding.

20031103 JJM Fix new non-normative SOAP binding pseudo-schema.

20031102 SW Updated SOAP binding.

20031102 SW Change 1.2 to 2.0 per WG decision to rename.

20030606 JJM Replaced <kw/> by . Indicated that pseudo-schemas are not normative

20030604 JJM Reformated pseudo-syntax elements to match Part 1 layout

20030529 JCS Incorporated text to resolve Issue 6e

20030523 JJM Commented out MIME binding example; this is primer stuff.

20030523 JJM Added pseudo-syntax to all sections.

20030523 JJM Started converting the fault and headerfault sections to component model.

20030523 JJM Complete the Multipart and x-www-form-urlencoded sections.

83

C.2 WSDL 2.0 Bindings Change Log

20030523 JJM Fixed typos in HTTP binding (in particular added NOT in some section headers).

20030522 JCS Added rules for serializing HTTP response

20030522 JCS Added cardinality to pseudo schema for HTTP binding

20030522 JCS Changes @transport to @protocol for SOAP binding

20030522 JJM Incorporated remaining text from Philippe into the HTTP binding.

20030522 JJM
Polished the HTTP binding, split into subsections, added double curly brace escape
mechanism, removed pseudo-schema.

20030521 JCS Added rules for @verbDefault/@verb and @location.

20030514 JJM
Start converting the HTTP binding to the component model. The next thing to do
will be to remove http:urlReplacement, etc. and incorporate instead Philippe’s text.

20030313 MJG Changed to Part 3 (from Part 2)

20030117 JCS
Incorporated resolution for Issue 5 (@encodingStyle). Referenced (rather than
in-lined XML Schema).

20030117 JJM Various editorial fixes.

20030116 JCS Updated pseudo and XML Schema.

20030116 JJM Added propertyConstraint section.

20030116 JJM Added soap:module section.

20030115 JCS

Incorporated resolutions for Issue 25 (drop @use and @encoding), Issue 51
(headers reference element/type), and attribute roll up into text and schema. Began
reworking SOAP HTTP binding to use Infoset model. Removed informative
appendices ’Notes on URIs’ and example WSDL documents; expect them to
appear in the primer. Updated SOAP 1.2 references to CR.

20030114 JJM Removed ednote saying Part 2 is out of synch with Part 1.

20030111 JJM Incorporated resolution for issue 17 (role AII).

20030109 JJM Incorporated resolution for issue 4 (Namespaces).

20020702 JJM Added summary to prefix table.

20020628 JJM Added out-of-synch-with-Part2 and not-soap12-yet ednote.

20020621 JJM
Commented out the link to the previous version. There is no previous version for
1.2 right now.

20020621 JJM Rewrote the Notation Conventions section.

20020621 JJM Added reference to part 0 in introduction. Renumbered references.

84

C.2 WSDL 2.0 Bindings Change Log

20020621 JJM Simplified abstract and introduction.

20020621 JJM Obtain the list of WG members from a separate file.

20020621 JJM Updated stylesheet and DTDs to latest XMLP stylesheet and DTDs.

20020621 JJM
Deleted placeholder for appendix C "Location of Extensibility Elements", since
this is part 1 stuff and extensibility has been reworked anyway.

20020621 JJM Corrected link to issues lists

20020621 JJM
Updated title from "WSDL" to "Web Services Description Language". Now refer
to part 1 as "Web Services... Part 1: Framework

20020621 JJM Added Jeffrey as an editor :-). Removed Gudge (now on Part 2) :-(

20020411 JJM Fixed typos noticed by Kevin Liu

20020301 JJM Converted the "Schemas" sections

20020301 JJM Converted the "Wire WSDL examples" sections

20020301 JJM Converted the "Notes on URIs" sections

20020301 JJM Converted the "Notational Conventions" sections

20020301 JJM Converted the "References" sections

20020301 JJM Converted the "MIME Binding" section to XML

20020221 JJM Converted the "HTTP Binding" section to XML

20020221 JJM Added placeholders for the "Wire examples" and "Schema" sections

20020221 JJM Converted the "SOAP Binding" section to XML

20020221 JJM Added the Change Log

20020221 JJM Added the Status section

20020221 JJM Simplified the introduction; referred to Part1 for a longer introduction

20020221 JJM Renamed to "Part 2: Bindings"

20020221 JJM Created from http://www.w3.org/TR/2001/NOTE-wsdl-20010315

85

C.2 WSDL 2.0 Bindings Change Log

	Web Services Description Language (WSDL) Version 2.0 Part 2: Adjuncts
	W3C Candidate Recommendation 6 January 2006
	Abstract
	Status of this Document
	Short Table of Contents
	Table of Contents
	Appendices

	1. Introduction
	1.1 Notational Conventions

	2. Predefined Message Exchange Patterns
	2.1 Template for Message Exchange Patterns
	2.1.1 Pattern Name

	2.2 Fault Propagation Rules
	2.2.1 Fault Replaces Message
	2.2.2 Message Triggers Fault
	2.2.3 No Faults

	2.3 Message Exchange Patterns
	2.3.1 In-Only
	2.3.2 Robust In-Only
	2.3.3 In-Out
	2.3.4 In-Optional-Out
	2.3.5 Out-Only
	2.3.6 Robust Out-Only
	2.3.7 Out-In
	2.3.8 Out-Optional-In

	2.4 Security Considerations

	3. Predefined Extensions
	3.1 Operation safety
	3.1.1 Relationship to WSDL Component Model
	3.1.2 XML Representation
	3.1.3 Mapping from XML Representation to Component Properties

	4. Predefined Operation Styles
	4.1 RPC Style
	4.1.1 wrpc:signature Extension
	4.1.2 XML Representation of the wrpc:signature Extension
	4.1.3 wrpc:signature Extension Mapping To Properties of an Interface Operation component

	4.2 IRI Style
	4.3 Multipart style

	5. WSDL SOAP Binding Extension
	5.1 XML Syntax Summary (Non-Normative)
	5.2 Identifying the use of the SOAP Binding
	5.3 SOAP Binding Rules
	5.4 Specifying the SOAP Version
	5.4.1 Description
	5.4.2 Relationship to WSDL Component Model
	5.4.3 XML Representation
	5.4.4 Mapping from XML Representation to Component properties

	5.5 Specifying the SOAP Underlying Protocol
	5.5.1 Description
	5.5.2 Relationship to WSDL Component Model
	5.5.3 XML Representation
	5.5.4 Mapping from XML Representation to Component Properties

	5.6 Binding Faults
	5.6.1 Description
	5.6.2 Relationship to WSDL Component Model
	5.6.3 XML Representation
	5.6.4 Mapping XML Representation to Component Properties

	5.7 Binding Operations
	5.7.1 Description
	5.7.2 Relationship to WSDL Component Model
	5.7.3 XML Representation
	5.7.4 Mapping from XML Representation to Component Properties

	5.8 Declaring SOAP Modules
	5.8.1 Description
	5.8.2 Relationship to WSDL Component Model
	5.8.3 SOAP Module component
	5.8.4 XML Representation
	5.8.5 Mapping from XML Representation to Component Properties
	5.8.6 IRI Identification Of A SOAP Module component

	5.9 Declaring SOAP Header Blocks
	5.9.1 Description
	5.9.2 Relationship to WSDL Component Model
	5.9.3 SOAP Header Block component
	5.9.4 XML Representation
	5.9.5 Mapping XML Representation to Component Properties
	5.9.6 IRI Identification Of A SOAP Header Block component

	5.10 WSDL SOAP 1.2 Binding
	5.10.1 Identifying a WSDL SOAP 1.2 Binding
	5.10.2 Description
	5.10.3 SOAP 1.2 Binding Rules
	5.10.4 Binding WSDL 2.0 MEPs to SOAP 1.2 MEPs
	5.10.4.1 Using SOAP Request-Response
	5.10.4.1.1 The Client
	5.10.4.1.2 The Service

	5.10.4.2 Using SOAP-Response
	5.10.4.2.1 The Client
	5.10.4.2.2 The Service

	5.11 Conformance

	6. WSDL HTTP Binding Extension
	6.1 Identifying the use of the HTTP Binding
	6.2 HTTP Syntax Summary (Non-Normative)
	6.3 HTTP Binding Rules
	6.3.1 HTTP Method Selection
	6.3.2 Payload Construction And Serialization Format
	6.3.2.1 Serialization rules for XML messages

	6.3.3 Default input and output serialization format
	6.3.4 HTTP Header Construction

	6.4 Specifying the HTTP Version
	6.4.1 Description
	6.4.2 Relationship to WSDL Component Model
	6.4.3 XML Representation
	6.4.4 Mapping from XML Representation to Component Properties

	6.5 Binding Operations
	6.5.1 Description
	6.5.2 Relationship to WSDL Component Model
	6.5.3 Specification of serialization rules allowed
	6.5.4 XML Representation
	6.5.5 Mapping from XML Representation to Component Properties

	6.6 Declaring HTTP Headers
	6.6.1 Description
	6.6.2 Relationship to WSDL Component Model
	6.6.3 HTTP Header component
	6.6.4 XML Representation
	6.6.5 Mapping from XML Representation to Component Properties
	6.6.6 IRI Identification Of A HTTP Header component

	6.7 Specifying HTTP Error Code for Faults
	6.7.1 Description
	6.7.2 Relationship to WSDL Component Model
	6.7.3 XML Representation
	6.7.4 Mapping from XML Representation to Component Properties

	6.8 Serialization Format of Instance Data
	6.8.1 Serialization of the instance data in parts of the HTTP request IRI
	6.8.1.1 Construction of the request IRI using the {http location} property

	6.8.2 Serialization as "application/x-www-form-urlencoded"
	6.8.2.1 Case of elements cited in the {http location} property
	6.8.2.2 Serialization of content of the instance data not cited in the {http location} property
	6.8.2.2.1 Construction of the query string
	6.8.2.2.2 Controlling the serialization of the query string in the request IRI
	6.8.2.2.3 Serialization in the request IRI
	6.8.2.2.4 Serialization in the message body

	6.8.3 Serialization as "application/xml"
	6.8.4 Serialization as "multipart/form-data"

	6.9 Specifying the Transfer Coding
	6.9.1 Description
	6.9.2 Relationship to WSDL Component Model
	6.9.3 XML Representation
	6.9.4 Mapping from XML Representation to Component Properties

	6.10 Specifying the Use of HTTP Cookies
	6.10.1 Description
	6.10.2 Relationship to WSDL Component Model
	6.10.3 XML Representation
	6.10.4 Mapping from XML Representation to Component Properties

	6.11 Specifying HTTP Access Authentication
	6.11.1 Description
	6.11.2 Relationship to WSDL Component Model
	6.11.3 XML Representation
	6.11.4 Mapping from XML Representation to Component Properties

	6.12 Conformance

	7. References
	7.1 Normative References
	7.2 Informative References

	A. Acknowledgements (Non-Normative)
	B. Component Summary (Non-Normative)
	C. Part 2 Change Log (Non-Normative)
	C.1 WSDL 2.0 Extensions Change Log
	C.2 WSDL 2.0 Bindings Change Log

