Table of Contents

W3C

I~

Web Services Description Language (WSDL) Version 2.0
Part 0. Primer

W3C Candidate Recommendation 6 January 2006

This version:
|http:/fwww.w3.0rg/TR/2006/CR-wsdl20-primer-20060[L06
Latest version:
[http:/fiwww.w3.0org/ TR/wsdI20-primer
Previous versions:
|http:/fwww.w3.0rg/TR/2005/WD-wsdI20-primer-20050803
Editors:
David Booth, W3C Fellow / Hewlett-Packard
Canyang Kevin Liu, SAP Labs

This document is also available in these non-normative formats: PDF, PostScript, XML, and plain text.

© 2006 World Wide Web ConsortiumW3@Massachusetts Institute of TechnologyMIT,
[European Research Consortium for Informatics and MathematicsHRCIM, Keio), All Rights Reserved.
W3Cl|liability}, [trademark and document lise rules apply.

Abstract

This document is a companion to the WSDL 2.0 specificatdeb(Services Description Language
(WSDL) Version 2.0 Part 1: Core LangualygSDL 2.0 Colle [p.83], Web Services Description
Language (WSDL) Version 2.0 Part 2: AdjunfsSDL 2.0 Adjuncts [p.83). It is intended for readers
who wish to have an easier, less technical introduction to the main features of the language.

This primer is only intended to be a starting point toward use of WSDL 2.0, and hence does not describe
every feature of the language. Users are expected to consult the WSDL 2.0 specification if they wish to
make use of more sophisticated features or techniques.

Finally, this primer ision-normative Any specific questions of what WSDL 2.0 requires or forbids should
be referred to the WSDL 2.0 specification.

http://www.w3.org/
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060106
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/2005/WD-wsdl20-primer-20050803
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

Status of this Document

Status of this Document

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report
can be found in tHe W3C technical reports index at http://www.w3.0rg/TR/.

This is thg W3C Candidate Recommendation of Web Services Description Language (WSDL) Version 2.0
Part 0: Primer for review by W3C Members and other interested parties. It has been producgd by the Web
[Services Description Working Grdup, which is part of the W3C Web Services Activity. This specification
will remain a Candidate Recommendation at least until 15 March 2006.

This Working Draft addresses all the comments received during the second Last Call review period on the
WSDL 2.0 drafts. The detailed disposition of the comments received can be found in the Last Call issues
A diff-marked version against the previous version of this document is available.

If the feedback is positive, the Working Group plans to submit this specification for consideration as a

W3C Proposed Recommendation along with the rest of the WSDL 2.0 documents for Which an irhplemen-
ftation repolt is available.

Implementers are encouraged to provide feedback by 15 March 2006. Comments on this document are to
be sent to the public public-ws-desc-comments@wa3.org mailing list (public grchive).

Issues about this document are recorded in the Candidate Recommendation issues list maintained by the
Working Group. A list of formal objectiohs against the set of WSDL 2.0 Working Drafts is also available.

Publication as a Candidate Recommendation does not imply endorsement by the W3C Membership. This
is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inap-
propriate to cite this document as other than work in progress.

This document has been produced under the 24 January 2002 Current Patent Practice as amended by the
[W3C Patent Policy Transition Procedure. Patent disclosures relevant to this specification may be found on
the Working Group’s patent disclosure gage. An individual who has actual knowledge of a patent which
the individual believes contains Essential Claim(s) with respect to this specification should disclose the
information in accordance with section 6 of the W3C Patent Policy.

Short Table of Contents

1.[Introductioh [p.5]
2.[WSDL 2.0 Basigs [p.7]

3.[Advanced Topics I: Importing Mechanigms [p.42]
4.|Advanced Topics Il: Extensibility and Predefined Extengions [p.50]
5.[Advanced Topics llI: Miscellanequs [p.62]

6.[Referencés [p.82]
A.|Acknowledgements [p.86] (Non-Normative)

http://www.w3.org/TR/
http://www.w3.org/2005/10/Process-20051014/tr.html#RecsCR
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/desc/
http://www.w3.org/2002/ws/Activity
http://www.w3.org/2002/ws/desc/5/lc-issues/
http://www.w3.org/2002/ws/desc/5/lc-issues/
http://www.w3.org/2005/10/Process-20051014/tr.html#RecsPR
http://www.w3.org/2002/ws/desc/5/impl-report/
http://www.w3.org/2002/ws/desc/5/impl-report/
http://www.w3.org/2005/10/Process-20051014/tr.html#cfi
http://lists.w3.org/Archives/Public/public-ws-desc-comments/
http://www.w3.org/2002/ws/desc/5/cr-issues/
http://www.w3.org/2002/ws/desc/5/07/objections.html
http://www.w3.org/TR/2002/NOTE-patent-practice-20020124
http://www.w3.org/2004/02/05-pp-transition
http://www.w3.org/2002/ws/desc/2/04/24-IPR-statements.html
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure

Table of Contents

Table of Contents

1.[Introductioh [p.5]
1.1[Prerequisitgs [p.5]
1.2 Structure of this Primer [p.5]
1.3 Use of URI and IRI [p.6]
1.4 Notational Conventions [p.6]
2.[WSDL 2.0 Basigs [p.7]
2.1 Getting Started: The GreatH Hotel Example [p.7]
2.1.1 Example Scenario: The GreatH Hotel Reservation Service [p.7]
2.1.2 Defining a WSDL 2.0 Target Namespace [p.9]
2.1.2.]L Explanation of Example [p.10]
2.1.3 Defining Message Types [p.10]
2.1.3.]L Explanation of Example [p.11]
2.1.4 Defining an Interfdce [p.12]
2.1.4.]L Explanation of Example [p.13]
2.1.% Defining a Binding [p.15]
2.1.5.]L Explanation of Example [p.16]
2.1.6 Defining a Service [p.17]
2.1.6.JL Explanation of Example [p.18]
2.1.7 Documenting the Seryice [p.19]
2.1.7.]L Explanation of Example [p.20]
2.2WSDL 2.0 Infoset, Schema and Component Mlodel [p.20]
2.2.f WSDL 2.0 Infodet [p.20]
2.2.2WSDL 2.0 Schena [p.21]
2.2.2.L WSDL 2.0 Element Ordefing [p.21]
2.2.3 WSDL 2.0 Component Model [p.22]
2.2.3.L WSDL 2.0 Import and Incluide [p.24]
2.3 More on Message Types [p.24]
2.3.1 Inlining XML Schenpa [p.25]
2.3.2 Importing XML Schema [p.25]
2.3.3 Summary of Import and Include Mechanisms [p.27]
2.4 More on Interfacps [p.28]
2.4.1 Interface Syntax [p.28]
2.4.2 Interface Inheritance [p.29]
2.4.3 Interface Faylts [p.31]
2.4.4 Interface Operatigns [p.31]
2.4.4.]L Operation Attributes [p.31]
2.4.4.R Operation Message Refergnces [p.32]
2.4.4.2]1 The messagelLabel Attribute [p.33]
2.4.4.2]2 The element Attribute [p.33]
2.4.4.2]3 Multiple infault or outfault Eleménts [p.33]
2.4.4.8 Understanding Message Exchange Patterns (MEPS) [p.33]
2.5 More on Bindings [p.35]
2.5.1 Syntax Summary for Bindings [p.35]

Table of Contents

2.5.2 Reusable Bindings [p.36]
2.5.3 Binding Faults [p.36]
2.5.4 Binding Operatidns [p.37]
2.5.% The SOAP Binding Extendion [p.37]
2.5.5.[L Explanation of Example [p.38]
2.5.¢ The HTTP Binding Extensfon [p.39]
2.5.6.[L Explanation of Example [p.40]
2.5.THTTP GET Versus POST: Which to Jse? [p.41]
3.[Advanced Topics I: Importing Mechanigms [p.42]
3.1 Importing WSDJ. [p.42]
3.2 Importing Schemias [p.45]
3.2.1 Schemas in Imported Documlents [p.45]
3.2.2 Multiple Tnline Schemas in One Docurhent [p.47]
3.2.3 The schemaLocation Attrijute [p.49]
3.2.3. mas [p.49]
4.[Advanced Topics II: Extensibility and Predefined Extengions [p.50]
4.1[Extensibflity [p.50]
4.1.1 Optional Versus Required Extengions [p.51]
4, 2| Features and Pro@eﬂtles [p.51]
2.1 SOAP Modulks [p.52]
4 2.2 Abstract Featufes [p.52]
3 Proﬁertlbs [p. 53]
4 JDefining New MERS [p.55]
4.3.1 Confirmed Challerjge [p.56]
4.4RPC Style [p.58]

4.9 MTOM and Attachments Support [p.60]
5.[Advanced Topics Ill: Miscellanedus [p.62]
5.1 Enabling Easy Message Disphtch [p.62]
5.2 Web Service Versioning [p.63]
5.2.1 Compatible Evolutipn [p.64]
5.2.4 Big Barlg [p.65]
5.2.3 Evolving a Service [p.65]
5.2.4 Combined Approaches [p.65]
5.2.% Examples of Versioning and Extending a Service [p.66]
5.2.5.]L Additional Optional Elements Added in Cohtent [p.66]
5.2.5.R Additional Optional Elements Added to a Header [p.66]
5.2.5.8 Additional Mandatory Elements in Comtent [p.67]
5.2.5.44 Additional Optional Operation Added to Intefface [p.67]
5.2.5.p Additional Mandatory Operation Added to Intefface [p.67]
5.2.5.p Indicating Incompatibility by Changing the Endpoin{ URI [p.68]
5.2.5.) Indicating Incompatibility by Changing the SOAP Action [p.68]
5.2.5.B Indicating Incompatibility by Changing the Element Content [p.69]
5.3 Describing Web Service Messages That Refer to Other Web Services [p.69]
5.3.1 The Reservation Details Web Sefvice [p.69]
5.3.2 The Reservation List Web Service [p.72]
5.3.3 Reservation Details Web Service Using HTTP Transfer [p.76]
5.3.4 Reservation List Web Service Using HTTP|GET [p.77]

1. Introduction

5.4 Multiple Interfaces for the Same Seryice [p.79]
5. Ma ping to RDF and Semantic Web [p.80]
5.1 RDF Representation of WSDL] 2.0 [p.80]
5. dEes on URJIs [p.81]
6.1 XML Namespaces and Schema Locdtions [p.81]
5 6 ? Relative URIs [p.81]
Generating Temporary URIs [p.81]
6. |Referenc§as [p.82]
6.1 Normative Referendes [p.82]
6.2 Informative Referendes [p.84]

Appendix

A.|Acknowledgements [p.86] (Non-Normative)

1. Introduction

1.1 Prerequisites
This primer assumes that the reader has the following prerequisite knowledge:

e familiarity with XML (Extensible Markup Language (XML) 1.0 (Second EditfZML 1.9 [p.82]],
XML Information SefXML Information S¢t [p.82]) and XML NamespacedNamespaces in XML
[XML Namespaces [p.82);

® some familiarity with XML SchemaXML Schema Part 1: Structur@§ML Schema: Structures
[p.82]] XML Schema Part 2: Datatyp@8ML Schema: Datatypes [p.8B}

e familiarity with basic Web services concepts such as Web service, client, and the purpose and func-
tion of a Web service description. (For an explanation of basic Web services concepmsbsee
Services ArchitecturfiV'S Architectufe [p.83][Section 1.4 antlVeb Services GlossafwsS Glossaty
[p.83]] [olossary. However, note ti#eb Services Architectudmcument uses the slightly more
precise termq "requester agent" gnd "provider agent" instead of the terms "client" and "Web service"
used in this primer.)

No previous experience with WSDL is assumed.

1.2 Structure of this Primer

Section 2 starts with a hypothetical use case involving a hotel reservation service. It proceeds step-by-step
through the development of a simple example WSDL 2.0 document that describes this service:

® Thetypes element describes the kinds of messages that the service will send and receive.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#whatis
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#requesteragent
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#provideragent

1.3 Use of URI and IRI

® Theinterface element describeghatabstract functionality the Web service provides.
e Thebinding element describdswto access the service.
® Theservice element describeshereto access the service.

After presenting the example, it moves on to introduce the WSDL 2.0 infoset, schema, and component
model. Then it provides more detailed coverage on defining message types, interfaces, bindings, and
services.

Section 3 explains the WSDL 2.0 importing mechanisms in great details.
Section 4 talks about WSDL 2.0 extensibility and various predefined extensions.

Section 5 covers various topics that may fall outside the scope of WSDL 2.0, but shall provide useful
background and best practice guidances that may be useful when authoring a WSDL 2.0 document or
implementing the WSDL 2.0 specification.

1.3 Use of URI and IRI

The core specification of WSDL 2.0 supports Internationalized Resource Identifiers

[p.82]]. IRIs are a superset of URIs with added support for internationalization. The URI syntax
IETF RFC 398F [p.82] only allows the use of a small set of characters, including upper and lower case
letters of the English alphabet, European numerals and a few symbols. IRIs allow the use of characters
from a wider range of language scripts.

For simplicity, examples throughout this primer only use URIs. If you are interested in learning more
about the use of IRIs, you might care to read the paper prepared by the W3C Internationalizatioh Activity.

1.4 Notational Conventions

This document uses several XML namespaces, some of which are defined by standards, and some are
application-specific. Namespace names of the general form "http://greath.example.com/..." represent
application or context-dependent URIETF RFC 398 [p.82].Note also that the choice of any names-
pace prefix is arbitrary and not semantically significant (¥&4L] Information S¢t [p.82]).

Following the convention for XML syntax summary WEDL 2.0 Core [p.83], this primer uses an
informal syntax to describe the XML grammar of a WSDL 2.0 document:

® The syntax appears as an XML instance, but the values indicate the data types instead of values.

® Characters are appended to elements and attributes as follows: "?" (0 or 1), ™" (0 or more), "+" (1 or
more).

® Elements names ending in." indicate that elements/attributes irrelevant to the context are being
omitted.

http://www.w3.org/International/articles/idn-and-iri/
http://www.w3.org/International/

2. WSDL 2.0 Basics

2. WSDL 2.0 Basics
2.1 Getting Started: The GreatH Hotel Example

This section introduces the basic concepts used in WSDL 2.0 through the description of a hypothetical
hotel reservation service. We start with a simple scenario, and later add more requirements to illustrate
how more advanced WSDL 2.0 features may be used.

2.1.1 Example Scenario: The GreatH Hotel Reservation Service

Hotel GreatH (a fictional hotel)) is located in a remote island. It has been relying on fax and phone to
provide room reservations. Even though the facilities and prices at GreatH are better than what its
competitor offers, GreatH notices that its competitor is getting more customers than GreatH. After
research, GreatH realizes that this is because the competitor offers a Web service that permits travel agent
reservation systems to reserve rooms directly over the Internet. GreatH then hires us to build a reservation
Web service with the following functionality:

® CheckAvailability To check availability, the client must specify a check-in date, a check-out date,
and room type. The Web service will return a room rate (a floating point number in USD$) if such a
room is available, or a zero room rate if not. If any input data is invalid, the service should return an
error. Thus, the service will acceptlaeckAvailability message and returrcheckAvail-
abilityResponse orinvalidDataFault message.

e MakeReservatiariTo make a reservation, a client must provide a name, address, and credit card
information, and the service will return a confirmation number if the reservation is successful. The
service will return an error message if the credit card number or any other data field is invalid. Thus,
the service will acceptmakeReservation message and returmakeReservationRe-
sponse orinvalidCreditCardFault message.

We know that we will later need to build a complete system that supports transactions and secured trans-
mission, but initially we will implement only minimal functionality. In fact, to simplify our first example,
we will implement only th&€heckAvailabilityoperation.

The next several sections proceed step-by-step through the process of developing a WSDL 2.0 document
that describes the desired Web service. However, for those who can’t wait to see a complete example, here
is the WSDL 2.0 document that we’ll be creating.

Example 2-1. WSDL 2.0 Document for the GreatH Web Service (Initial Example)

<?xml version="1.0" encoding="utf-8" ?>

<description
xmins="http://www.w3.0rg/2006/01/wsdl"
targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
xmins:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmins:ghns = "http://greath.example.com/2004/schemas/resSvc"
xmins:wsoap= "http://www.w3.0rg/2006/01/wsdl/soap”
xmins:soap="http://www.w3.0rg/2003/05/soap-envelope"
xmins:wsdlx= "http://www.w3.0rg/2006/01/wsdl-extensions">

2.1 Getting Started: The GreatH Hotel Example

<documentation>
This document describes the GreatH Web service. Additional
application-level requirements for use of this service --
beyond what WSDL 2.0 is able to describe -- are available
at http://greath.example.com/2004/reservation-documentation.html
</documentation>

<types>
<xs:schema
xmins:xs="http://mwww.w3.0rg/2001/XMLSchema"
targetNamespace="http://greath.example.com/2004/schemas/resSvc"
xmIns="http://greath.example.com/2004/schemas/resSvc">

<xs:element name="checkAvailability" type="tCheckAvailability"/>
<xs:complexType name="tCheckAvailability">
<xs:sequence>
<xs:element name="checkinDate" type="xs:date"/>
<xs:element name="checkOutDate" type="xs:date"/>
<xs:element name="roomType" type="xs:string"/>
</xs:sequence>
</xs:complexType>

<xs:element name="checkAvailabilityResponse" type="xs:double"/>
<xs:element name="invalidDataError" type="xs:string"/>

</xs:schema>
</types>

<interface name = "reservationinterface" >

<fault name = "invalidDataFault"
element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out"
style="http://www.w3.0rg/2006/01/wsdl/style/iri"
wsdlIx:safe = "true">
<input messagelabel="In"
element="ghns:checkAvailability" />
<output messagelLabel="0ut"
element="ghns:checkAvailabilityResponse" />
<outfault ref="tns:invalidDataFault" messagelLabel="Out"/>
</operation>

</interface>

<binding name="reservationSOAPBInding"
interface="tns:reservationInterface"
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP">

<fault ref="tns:invalidDataFault"
wsoap:code="soap:Sender"/>

<operation ref="tns:opCheckAvailability"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/soap-response"/>

2.1 Getting Started: The GreatH Hotel Example

</binding>

<service name="reservationService"
interface="tns:reservationinterface">

<endpoint name="reservationEndpoint"
binding="tns:reservationSOAPBInding"
address ="http://greath.example.com/2004/reservation"/>

</service>

</description>

2.1.2 Defining a WSDL 2.0 Target Namespace

Before writing our WSDL 2.0 document, we need to decide WS®L 2.0 target namespatk| for it.

The WSDL 2.0 target namespace is analogous to an XML Schema target namespace. Interface, binding
and service names that we define in our WSDL 2.0 document will be associated with the WSDL 2.0 target
namespace, and thus will be distinguishable from similar names in a different WSDL 2.0 target names-
pace. (This will become important if using WSDL 2.0’s import or interface inheritance mechanisms.)

The value of the WSDL 2.0 target namespace must be an absolute URI. Furthermore, it should be derefer-
enceable to a WSDL 2.0 document that describes the Web service that the WSDL 2.0 target namespace is
used to describe. For example, the GreatH owners should make the WSDL 2.0 document available from
this URI. (And if a WSDL 2.0 description is split into multiple documents, then the WSDL 2.0 target
namespace should resolve to a master document that includes all the WSDL 2.0 documents needed for that
service description.) However, there is no absolute requirement for this URI to be dereferenceable, so a
WSDL 2.0 processor must not depend on it being dereferenceable.

This recommendation may sound circular, but bear in mind that the client might have obtained the WSDL
2.0 document from anywhere -- not necessarily an authoritative source. But by dereferencing the WSDL
2.0 target namespace URI, a user should be able to obtain an authoritative version. Since GreatH will be
the owner of the service, the WSDL 2.0 target namespace URI should refer to a location on the GreatH
Web site or otherwise within its control.

Once we have decided on a WSDL 2.0 target namespace URI, we can begin our WSDL 2.0 document as
the following empty shell.

Example 2-2. An Initial Empty WSDL 2.0 Document

<?xml version="1.0" encoding="utf-8" ?>
<description
xmins="http://www.w3.0rg/2006/01/wsdl"
targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
xmins:tns= "http://greath.example.com/2004/wsdl/resSvc"
4

</description>

2.1 Getting Started: The GreatH Hotel Example

2.1.2.1 Explanation of Example
<description

Every WSDL 2.0 document haglascription element as its top-most element. This merely acts
as a container for the rest of the WSDL 2.0 document, and is used to declare namespaces that will be
used throughout the document.

xmins="http://www.w3.0rg/2006/01/wsdI"

This is the XML namespace for WSDL 2.0 itself. We assign it as the default namespace for this
example by not defining a prefix for it. In other words, any unprefixed elements in this example are
expected to be WSDL 2.0 elements (such asléseription element).

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

This defines the WSDL 2.0 target namespace that we have chosen for the GreatH reservation service,
as described above. Note that this is not an actual XML namespace declaration. Rather, it is a WSDL
2.0 attribute whose purposeasalogougo an XML Schema target namespace.

xmins:tns= "http://greath.example.com/2004/wsdl/resSvc"

This is an actual XML namespace declaration for use in our GreatH service description. Note that this
is the same URI that was specified above as the value @rfeNamespace attribute. This

will allow us later to use thms: prefix in QNames, to refer to the WSDL 2.0 target namespace of

the GreatH service. (For more on QNames &4 Namespacgs [p.82]section

Nameb.)

Now we can start describing the GreatH service.

2.1.3 Defining Message Types

We know that the GreatH service will be sending and receiving messages, so a good starting point in
describing the service is to define the message types that the service will use. We'll use XML Schema to
do so, because WSDL 2.0 processors are likely to support XML Schema at a minimum. However, WSDL
2.0 does not prohibit the use of some other schema definition language.

WSDL 2.0 allows message types to be defined directly within the WSDL 2.0 document, insigeethe
element, which is a child of thdescription element. (Later we’ll see how we can provide the type
definitions in a separate document, using XML Scheinag®rt mechanism.) The following schema
definescheckAvailability , checkAvailabilityResponse andinvalidDataError

message types that we’ll need.

In WSDL 2.0, all normal and fault message types must be defined aselamgkntsat the topmost level
(though of course each element may have any amount of substructure inside it). Thus, a message type
must not directly consist of a sequence of elements or other complex type.

10

http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-qualnames
http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-qualnames

2.1 Getting Started: The GreatH Hotel Example

Example 2-3. GreatH Message Types

<?xml version="1.0" encoding="utf-8" ?>
<description
xmins="http://www.w3.0rg/2006/01/wsdl"
targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
xmins:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmins:ghns = "http://greath.example.com/2004/schemas/resSvc"
. >

<types>
<xs:schema
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://greath.example.com/2004/schemas/resSvc"
xmins="http://greath.example.com/2004/schemas/resSvc">

<xs:element name="checkAvailability" type="tCheckAvailability"/>
<xs:complexType name="tCheckAvailability">
<xs:sequence>
<xs:element name="checkinDate" type="xs:date"/>
<xs:element name="checkOutDate" type="xs:date"/>
<xs:element name="roomType" type="xs:string"/>
</xs:sequence>
</xs:complexType>

<xs:element name="checkAvailabilityResponse" type="xs:double"/>
<xs:element name="invalidDataError" type="xs:string"/>

</xs:schema>
</types>

<}déscription>
2.1.3.1 Explanation of Example
xmins:ghns = "http://greath.example.com/2004/schemas/resSvc"

We've added another namespace declarationgfihe namespace prefix will allow us (later, when
defining an interface) to reference the XML Schema target namespace that we define for our message
types. Thus, the URI we specify must be the same as the URI that we define as the target namespace
of our XML Schema types (below) ret the target namespace of the WSDL 2.0 document itself.

targetNamespace="http://greath.example.com/2004/schemas/resSvc"

This is the XML Schema target namespace that we’ve created for use by the GreatH reservation
service. TheheckAvailability , checkAvailabilityResponse andinvalid-
DataError element names will be associated with this XML Schema target namespace.

checkAvailability , checkAvailabilityResponse andinvalidDataError

11

2.1 Getting Started: The GreatH Hotel Example

These are the message types that we’ll use. Note that these are defined to &lerxibtitsas
explained above.

Although we have defined several types, we have not yet indicated which ones are to be used as message
types for a Web service. We'll do that in the next section.

2.1.4 Defining an Interface

WSDL 2.0 enables one to separate the description of a Web service’s abstract functionality from the
concrete details of how and where that functionality is offered. This separation facilitates different levels
of reusability and distribution of work in the lifecycle of a Web service and the WSDL 2.0 document that
describes it.

A WSDL 2.0interface defines the abstract interface of a Web service as a set of abpwaations

each operation representing a simple interaction between the client and the service. Each operation speci-
fies the types of messages that the service can send or receive as part of that operation. Each operation also
specifies a message exchapg#ternthat indicates the sequence in which the associated messages are to

be transmitted between the parties. For exampléntbat pattern (se&/SDL 2.0 Predefined Extensions

WSDL 2.0 Adjundts [p.83]section 2.2.8 Tn-Olit) indicates that if the client sends a messagehe

service, the service will either send a reply messagedd& the client (in the normal case) or it will

send a fault message back to the client (in the case of an error). We will explain more about message
exchangepatterrs inj2.4.4.3 Understanding Message Exchange Patterns (MERB)33]

For the GreatH service, we will (initially) define an interface containing a single ope@iGheck-
Availability , using thecheckAvailability andcheckAvailabilityResponse message
types that we defined in tiigpes section. We'll use the in-dut pattern for this operation, because this is
the most natural way to represent a simple request-response interaction. We could have instead (for
example) defined two separate operations using_the ifi-only and olit-only patteMSB3Ee&.0 Prede-

fined ExtensionfWSDL 2.0 Adjunds [p.83]section 2.2.L In-On]y and section 2.p.5 Out-Qnly), but that
would just complicate matters for the client, because we would then have to separately indicate to the
client developer that the two operations should be used together as a request-response pair.

In addition to the normal input and output messages, we also need to specify the fault message that we
wish to use in the event of an error. WSDL 2.0 permits fault messages to be declared wiititém-the

face element in order to facilitate reuse of faults across operations. If a fault occurs, it terminates what-
ever message sequence was indicated by the message exchange pattern of the operation.

Let's add these to our WSDL 2.0 document.

Example 2-4. GreatH Interface Definition

<?xml version="1.0" encoding="utf-8" ?>

<description
xmins="http://www.w3.0rg/2006/01/wsdl"
targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
xmins:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmins:ghns = "http://greath.example.com/2004/schemas/resSvc"

xmins:wsdIx="http://www.w3.0rg/2006/01/wsdl-extensions">

12

http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#in-out
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#in-out
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#in-out
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#out-only
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#in-only
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#out-only

2.1 Getting Started: The GreatH Hotel Example

<types>
</types>
<interface name = "reservationinterface" >

<fault name = "invalidDataFault"
element = "ghns:invalidDataError"/>

<operation name="opCheckAvailability"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out"
style="http://www.w3.0rg/2006/01/wsdl/style/iri"
wsdlIx:safe = "true">
<input messagelLabel="In"
element="ghns:checkAvailability" />
<output messagelLabel="0ut"
element="ghns:checkAvailabilityResponse" />
<outfault ref="tns:invalidDataFault" messagelLabel="Out"/>
</operation>

</interface>

</description>
2.1.4.1 Explanation of Example
<interface name = "reservationinterface" >

Interfaces are declared directly inside description element. In this example, we are declaring
only one interface, but in general a WSDL 2.0 document may declare more than one interface. Thus,
each interface must be given a name that is unique within the set of interfaces defined in this WSDL
2.0 target namespace. Interface names are tokens that must not contain a space or colon (":").

<fault name = "invalidDataFault"

Thename attribute defines a hame for this fault. The name is required so that when an operation is
defined, it can reference the desired fault by name. Fault names must be unigue within an interface.

element = "ghns:invalidDataError"/>

Theelement attribute specifies the schema type of the fault message, as previously defined in the
types section.

<operation name="opCheckAvailability"

Thename attribute defines a name for this operation, so that it can be referenced later when bindings
are defined. Operation names must also be unigue within an interface. (WSDL 2.0 uses separate
symbol spaces for operation and fault names, so operation name "foo" is distinct from fault name
llfooll.)

13

2.1 Getting Started: The GreatH Hotel Example

pattern="http://www.w3.0rg/2006/01/wsdl/in-out"

This line specifies that this operation will use[the ij-out pattern as described above. WSDL 2.0 uses
URIs to identify message exchange patterns in order to ensure that the identifiers are globally unam-
biguous, while also permitting future new patterns to be defined by anyone. (However, just because
someone defines a new pattern and creates a URI to identify it, thataloesan that other WSDL

2.0 processors will automatically recognize or understand that pattern. As with any other extension, it
can only be used among processorsdbatcognize and understand it.)

style="http://www.w3.0rg/2006/01/wsdl/style/iri"

This line indicates that the XML schema defining the input message of this operation follows a set of
rules as specified [n IRI Style that ensures the message can be serialized as an IRI.

wsdlx:safe="true" >

This line indicates that this operation will not obligate the client in any way, i.e., the client can safely
invoke this operation without fear that it may be incurring an obligation (such as agreeing to buy
something). This is further explaineddm.4 Interface Operation§p.31] .

<input messageLabel="In"

Theinput element specifies an input message. Even though we have already specified which
message exchange pattern the operation will use, a message exchange pattern represents a template
for a message sequence, and in theory could consist of multiple input and/or output messages. Thus
we must also indicate which potential input message in the pattern this particular input message
represents. This is the purpose of tiessageLabel attribute. Since tHe in-dut pattern that we've
chosen to use only has one input message, it is trivial in this case: we simply fill in the message label
"In" that was defined iWWSDL 2.0 Predefined ExtensidWgSDL 2.0 Adjuncts [p.83]section 2.2.3

for thg in-oyt pattern. However, if a new pattern is defined that involve multiple input

messages, then the different input messages in the pattern could then be distinguished by using differ-
ent labels.

element="ghns:checkAvailability" />

This specifies the message type for this input message, as defined previoustypeghesection.
<output messagelLabel="Out" . . .

This is similar to defining an input message.
<outfault ref="tns:invalidDataFault" messageLabel="0ut"/>

This associates an output fault with this operation. Faults are declared a little differently than normal
messages. Thef attribute refers to the name of a previously defined fault in this interface -- not a
message schema type directly. Since message exchange patterns could in general involve a sequence
of several messages, a fault could potentially occur at various points within the message sequence.
Because one may wish to associate a different fault with each permitted point in the sequence, the
messagelLabel is used to indicate the desired point for this particular fault. It does so indirectly by

14

http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#in-out
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#_operation_iri_style
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#in-out
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#in-out
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#in-out

2.1 Getting Started: The GreatH Hotel Example

specifying the message that will either trigger this fault or that this fault will replace, depending on

the pattern. (Some patterns uge a message-triggers-fault rule; others use a fault-replacgs-message rule.
SeeWSDL 2.0 Predefined Extensid8SDL 2.0 Adjunds [p.83]section 2.1.9 Message Triggérs

and section 2.1[1 Fault Replaces Megsage.)

Now that we've defined the abstract interface for the GreatH service, we're ready to define a binding for
it.

2.1.5 Defining a Binding

Although we have specifieethatabstract messages can be exchanged with the GreatH Web service, we
have not yet specifieldowthose messages can be exchanged. This is the purposmdiing A binding

specifies concrete message format and transmission protocol details for an interface, and must supply such
details for every operation and fault in the interface.

In the general case, binding details for each operation and fault are specifiedpesatgpn and

fault elements inside binding element, as shown in the example below. However, in some cases it
is possible to use defaulting rules to supply the information. The WSDL 2.0 SOAP binding extension, for
example, defines some defaulting rules for operations. \{&deServices Description Language (WSDL)
Version 2.0 Part 2: AdjuncfsVSDL 2.0 Adjuncts [p.83]|Default Binding Rulgs.)

In order to accommodate new kinds of message formats and transmission protocols, bindings are defined
using extensions to the WSDL 2.0 language, via WSDL 2.0’s open content mod@l.l(Ee¢ensibility]

[p.50] for more on extensibility.) WSDL 2.0 Parf@$DL 2.0 Adjuncts [p.83]defines binding exten-

sions for SOAP 1.4J0AP 1.2 Part 1: Messaging Framework [p.$4hd HTTP 1.1[[ETF RFC 261p

[p.84]] as predefined extensions, so that SOAP 1.2 or HTTP 1.1 bindings can be easily defined in WSDL
2.0 documents. However, other specifications could define new binding extensions that could also be used
to define bindings. (As with any extension, other WSDL 2.0 processors would have to know about the

new constructs in order to make use of them.)

For the GreatH service, we will use SOAP 1.2 as our concrete message format and HTTP as our underly-
ing transmission protocol, as shown below.

Example 2-5. GreatH Binding Definition

<?xml version="1.0" encoding="utf-8" ?>

<description
xmins="http://www.w3.0rg/2006/01/wsdl"
targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
xmins:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmins:ghns = "http://greath.example.com/2004/schemas/resSvc"
xmins:wsoap= "http://www.w3.0rg/2006/01/wsdl/soap"
xmins:soap="http://www.w3.0rg/2003/05/soap-envelope">

<types>
</types>

<interface name = "reservationinterface" >

15

http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#fault-trigger
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#fault-replacement
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#fault-trigger
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#fault-trigger
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#fault-replacement
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#soap-defaults

2.1 Getting Started: The GreatH Hotel Example

<f/interface>

<binding name="reservationSOAPBInding"
interface="tns:reservationinterface"
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP">

<operation ref="tns:opCheckAvailability"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/soap-response"/>

<fault ref="tns:invalidDataFault"
wsoap:code="soap:Sender"/>

</binding>
</description>
2.1.5.1 Explanation of Example

xmlns:wsoap= "http://www.w3.0rg/2006/01/wsdl/soap"

We've added two more namespace declarations. This one is the namespace for the SOAP 1.2 binding

extension that is defined in WSDL 2.0 PafS®AP 1.2 Part 1: Messaging Framework [p.$4]
Elements and attributes prefixed witlsoap: are constructs defined there.

xmins:soap="http://www.w3.0rg/2003/05/soap-envelope"

This namespace is defined by the SOAP 1.2 specification itself. The SOAP 1.2 specification defines
certain terms within this namespace to unambiguously identify particular concepts. Thus, we will use
thesoap: prefix when we need to refer to one of those terms.

<binding name="reservationSOAPBinding"

Bindings are declared directly inside description element. Th@ame attribute defines a

name for this binding. Each name must be unique among all bindings in this WSDL 2.0 target names-

pace, and will be used later when we define a service endpoint that references this binding. WSDL
2.0 uses separate symbol spaces for interfaces, bindings and services, so interface "foo", binding
"foo" and service "foo" are all distinct.

interface="tns:reservationinterface"

This is the name of the interface whose message format and transmission protocols we are specifying.

As discussed iR.5 More on Binding$[p.35] , a reusable binding can be defined by omitting the
interface attribute. Note also the use of tims: prefix, which refers to the previously defined
WSDL 2.0 target namespace for this WSDL 2.0 document. In this case it may seem silly to have to
specify thetns: prefix, but in3.1 Importing WSDL|[p.42] we will see how WSDL 2.0’s import

mechanism can be used to combine components that are defined in different WSDL 2.0 target names-

paces.

16

2.1 Getting Started: The GreatH Hotel Example

type="http://www.w3.0rg/2006/01/wsdl/soap"
This specifies what kind of concrete message format to use, in this case SOAP 1.2.
wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP"

This attribute is specific to WSDL 2.0’'s SOAP binding extension (thus it usesstiap: prefix). It
specifies the underlying transmission protocol that should be used, in this case HTTP.

<operation ref="tns:opCheckAvailability"

This is not defining a new operation; rather, it is referencing the previously defi@ekck-

Availability operation in order to specify binding details for it. This element can be omitted if
defaulting rules are instead used to supply the necessary information. (See the SOAP binding exten-
sion in WSDL 2.0 Part AYSDL 2.0 Adjuncts [p.83]section 4.3 Default Binding Rules .)

wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/soap-response">

This attribute is also specific to WSDL 2.0’s SOAP binding extension. It specifies the SOAP message
exchange pattern (MEP) that will be used to implement the abstract WSDL 2.0 message exchange
pattern|(in-oyt) that was specified when tpCheckAvailability operation was defined.

When HTTP is used as the underlying transport protocol (as in this exampledie: mep

attribute also controls whether GET or POST will be used as the underlying HTTP method. In this
case, the use of

wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/soap-response" causes

GET to be used by default. See §#s6.7 HTTP GET Versus POST: Which to Usdpp.41] .

<fault ref="tns:invalidDataFault"

As with a binding operation, this is not declaring a new fault; rather, it is referencing a fault
(invalidDataFault) that was previously defined in tbpCheckAvailability interface, in
order to specify binding details for it.

wsoap:code="soap:Sender"/>

This attribute is also specific to WSDL 2.0’s SOAP binding extension. This specifies the SOAP 1.2
fault code that will cause this fault message to be sent. If desired, a list of subcodes can also be speci-
fied using the optionalisoap:subcodes attribute.

2.1.6 Defining a Service

Now that our binding has specifiedw messages will be transmitted, we are ready to spebiéyethe
service can be accessed, by use ofteice element.

A WSDL 2.0servicespecifies a single interface that the service will support, and a ésidpbintloca-

tions where that service can be accessed. Each endpoint must also reference a previously defined binding
to indicate what protocols and transmission formats are to be used at that endpoint. A service is only
permitted to have one interface. (§eé Multiple Interfaces for the Same Servidgp.79] for further

17

http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#soap-defaults
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#in-out

2.1 Getting Started: The GreatH Hotel Example

discussion of this limitation.)
Here is a definition for our GreatH service.

Example 2-6. GreatH Service Definition

<?xml version="1.0" encoding="utf-8" ?>

<description
xmins="http://www.w3.0rg/2006/01/wsdl"
targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"
xmins:tns= "http://greath.example.com/2004/wsdl/resSvc"
xmins:ghns = "http://greath.example.com/2004/schemas/resSvc"
xmins:wsoap= "http://www.w3.0rg/2006/01/wsdl/soap”
xmins:soap="http://www.w3.0rg/2003/05/soap-envelope">

<types>

</types>

<interface name = "reservationinterface" >

</interface>

<binding name="reservationSOAPBInding"

interface="tns:reservationinterface"

>

</binding>

<service name="reservationService"
interface="tns:reservationinterface">

<endpoint name="reservationEndpoint"
binding="tns:reservationSOAPBInding"
address ="http://greath.example.com/2004/reservation"/>

</service>

</description>

2.1.6.1 Explanation of Example
<service name="reservationService"

This defines a name for this service, which must be unique among service names in the WSDL 2.0
target namespace. The name attribute is required. It allows URIs to be created that identify compo-
nents in WSDL 2.0 description. (S&¢SDL 2.0 Core Languad&/SDL 2.0 Coie [p.83] appendix C

[URI References for WSDL 2.0 constrycts.)

interface="tns:reservationinterface">

18

http://www.w3.org/TR/2004/WD-wsdl20-20040803/#wsdl-uri-references

2.1 Getting Started: The GreatH Hotel Example

This specifies the name of the previously defined interface that these service endpoints will support.
<endpoint name="reservationEndpoint"

This defines an endpoint for the service, and a nhame for this endpoint, which must be unique within
this service.

binding="tns:reservationSOAPBInding"
This specifies the name of the previously defined binding to be used by this endpoint.
address ="http://greath.example.com/2004/reservation"/>

This specifies the physical address at which this service can be accessed using the binding specified
by thebinding attribute.

That's it! Well, almost.

2.1.7 Documenting the Service

As we have seen, a WSDL 2.0 document is inherently opdrtial description of a service. Although it
captures the basic mechanics of interacting with the service -- the message types, transmission protocols,
service location, etc. -- in general, additional documentation will need to explain other application-level
requirements for its use. For example, such documentation should explain the purpose and use of the
service, the meanings of all messages, constraints on their use, and the sequence in which operations
should be invoked.

Thedocumentation element allows the WSDL 2.0 author to include some human-readable documen-
tation inside a WSDL 2.0 document. It is also a convenient place to reference any additional external
documentation that a client developer may need in order to use the service. It can appear in a number of
places in a WSDL 2.0 document (§2.1 WSDL 2.0 Infosg{p.20]), though in this example we have

only demonstrated its use at the beginning.

Example 2-7. Documenting the GreatH Service

<?xml version="1.0" encoding="utf-8" ?>
<description
L.

<documentation>
This document describes the GreatH Web service. Additional
application-level requirements for use of this service --
beyond what WSDL 2.0 is able to describe -- are available
at http://greath.example.com/2004/reservation-documentation.html
</documentation>

</description>

19

2.2 WSDL 2.0 Infoset, Schema and Component Model

2.1.7.1 Explanation of Example
<documentation>

This element is optional, but a good idea to include. It can contain arbitrary mixed content.
at http://greath.example.com/2004/reservation-documentation.html

The most important thing to include is a pointer to any additional documentation that a client devel-
oper would need in order to use the service.

This completes our presentation of the GreatH example. In the following sections, we will move on to
look into more details of various aspects of WSDL 2.0 specification.

2.2 WSDL 2.0 Infoset, Schema and Component Model

In computer science theory, a language consists of a (possibly infinite) set of sentences, and each sentence
is a finite string of literal symbols or characters. A language specification must therefore define the set
sentences in that language, and, to be useful, it should also indicate the meaning of each sentence. Indeed,
this is the purpose of the WSDL 2.0 specification.

However, instead of defining WSDL 2.0 in terms of literal symbols or characters, to avoid dependency on
any particular character encoding, WSDL 2.0 is defined in terms ofthelnfosef XML Information Se¢t

[p.82]]. Specifically, aWSDL 2.0 documermbnsists of @escription element information item (in

the XML Infoset) that conforms to the WSDL 2.0 specification. In other words, a sentence in the WSDL
2.0 language is description element information item that obeys the additional constraints spelled

out in the WSDL 2.0 specification.

Since an XML Infoset can be created from more than one physical document, a WSDL 2.0 document does
not necessarily correspond to a singjtesicaldocument: the word "document" is used figuratively, for
convenience. Furthermore, since WSDL 2.0 providgsrt andinclude mechanisms, a WSDL 2.0
document may reference other WSDL 2.0 documents to facilitate convenient organization or reuse. In
such cases, the meaning of the including or importing document as a whole will depend (in part) on the
meaning of the included or imported document.

The XML Infoset uses terms like "element information item" and "attribute information item". Unfortu-
nately, those terms are rather lengthy to repeat often. Thus, for convenience, this primer often uses the
terms "element" and "attribute" instead, as a shorthand. It should be understood, however, that since
WSDL 2.0 is based on the XML Infoset, we really mean "element information item" and "attribute infor-
mation item", respectively.

2.2.1 WSDL 2.0 Infoset

The following diagram gives an overview of the XML Infoset for a WSDL 2.0 document.

20

2.2 WSDL 2.0 Infoset, Schema and Component Model

o . o =
&0 import [“operation |- input
namespace — messagelLabel?
location? pattern element?
styla? o
L2 include Lo output infault
messagelabal? et
location .
-~ fault] slement? o~ |messagelabel?
0.1 nama . a.- OU"&UH
types element?
ref
messagelabel?
8. input
o interface = messagelabel?
description narme o
extends? output v
infault
targetNamespace styleDefaull? I s messagelabel?
operation |ref
0." |messagelabel?
ref
— | 8. outfault
0. binding . — et
name ault messagelLabal?
Intarface? ref
lype Legend:;
Element Information Item (EIl)
Required attribute infarmation item (A1)
Optional atiributes information itarm (A7
p.* .
service | endpoint Note:
name name = All Ells except <description=, <import>, <include=,
interface hinding and <lypes> may have <feature> andfor <property=
address? as children.

= All Ells may have <documentation> as first child
Figure 2-1. WSDL 2.0 Infoset Diagram

2.2.2 WSDL 2.0 Schema

The WSDL 2.0 specification supplieg a normative WSDL 2.0 sghema, defipéilingchema: Strufc-

[p.82]], which can be used as an aid in validating WSDL 2.0 documents. We say "as an aid" here
because WSDL 2.0 specificatiq/EDL 2.0 Colle [p.83] often provides further constraints to the WSDL

2.0 schema. In addition to being valid with the normative schema, a WSDL 2.0 document must also follow
all the constraints defined by the WSDL 2.0 specification.

2.2.2.1 WSDL 2.0 Element Ordering

This section gives an example of how WSDL 2.0 specification constrains the WSDL 2.0 schema about the
ordering of top WSDL 2.0 elements.

Although the WSDL 2.0 schema does not indicate the required ordering of elements, the WSDL 2.0 speci-
fication (WSDL 2.0 Part JWSDL 2.0 Cole [p.83] section ['’XML Representation of Description Compo-
[nen}") clearly states a set of constraints about how the children elementslegtrption element

should be ordered. Thus, the order of the WSDL 2.0 elements matters, in spite of what the WSDL 2.0
schema says.

21

http://www.w3.org/2006/01/wsdl
http://www.w3.org/TR/2006/CR-wsdl20-20060106#Description_XMLRep
http://www.w3.org/TR/2006/CR-wsdl20-20060106#Description_XMLRep

2.2 WSDL 2.0 Infoset, Schema and Component Model

The following is a pseudo-content modeldefscription

<descri ption>

<documentation />?

[<import /> | <include /> *

<types />?

[<interface /> | <binding /> | <service /> |*
</ descri pti on>

In other words, the children elements of tlescription element should be ordered as follows:
® An optionaldocumentation comes first, if present.
® then comes zero or more elements from among the following, in any order:
O include
O import

O extensions

An optionaltypes follows

Zero or more elements from among the following, in any order:
O interface
O binding
O service
O extensions.

Note the term "extension" is used above as a convenient way to refer to namespace-qualified extension
elements. The namespace name of such extension elements must not
be"http://www.w3.0rg/2006/01/wsdl".

2.2.3 WSDL 2.0 Component Model

The WSDL 2.0 Infoset model above illustrates the required structure of a WSDL 2.0 document, using the
XML Infoset. However, the WSDL 2.0 language also imposes many semantic constraints over and above
structural conformance to this XML Infoset. In order to precisely describe these constraints, and as an aid
in precisely defining the meaning of each WSDL 2.0 document, the WSDL 2.0 specification defines a
component models an additional layer of abstraction above the XML Infoset. Constraints and meaning
are defined in terms of this component model, and the definition of each component includes a mapping
that specifies how values in the component model are derived from corresponding items in the XML
Infoset. The following diagram gives an overview of the WSDL 2.0 components and their containment
hierarchy.

22

2.2 WSDL 2.0 Infoset, Schema and Component Model

A4 InterfaceMessageReference

InterfaceOperation |~

ol Interface | o-| InterfaceFaultReference
InterfaceFault
- BindingMessageReference
Description |
I .71 BindingOperation
d_‘ Binding

.| BindingFaultReference

BindingFault

Mote:

= Service .-| Endpoint - All components except Description may contain a
Feature component andfor a Property component

Figure 2-2. WSDL 2.0 Components Containment hierarchy

In general, the WSDL 2.0 component model parallels the structure of the required XML Infoset illustrated
above. For example, thiZescription Interface Binding ServiceandEndpointcomponentgorrespond to
thedescription ,interface , binding , service , andendpoint elementinformation items,
respectively. Since WSDL 2.0 relies heavily on the component model to convey the meaning of the
constructs in the WSDL 2.0 language, you can think of the Description component as representing the
meaning of thelescription element information item, and hence, it represents the meaning of the
WSDL 2.0 document as a whole.

Furthermore, each of these componentspnagertieswhose values are (usually) derived from the
element and attribute information item children of those element information items. For example, the
Service component corresponds togbevice element information item, so the Service component has
an {endpoints} property whose value is a set of Endpoint components correspondingridbiat

element information item children of thegrvice element information item. (Whew!).

23

2.3 More on Message Types

2.2.3.1 WSDL 2.0 Import and Include

The WSDL 2.0 component model is particularly helpful in defining the meanimgpoiit and

include elements. Thenclude element allows you to assemble the contents of a given WSDL 2.0
namespace from several WSDL 2.0 documents that define components for that namespace. The compo-
nents defined by a given WSDL 2.0 document consist of those whose definitions are contained in the
document and those that are defined by any WSDL 2.0 documents that are included in ihcladbe

element. The effect of thiaclude element is cumulative so that if document A includes document B

and document B includes document C, then the components defined by document A consist of those
whose definitions are contained in documents A, B, and C.

In contrast, thémport element does not define any components. Insteadnfeet element declares

that the components whose definitions are contained in a WSDL 2.0 document for a given WSDL 2.0
namespace refer to components that belong to a different WSDL 2.0 namespace. If a WSDL 2.0 document
contains definitions of components that refer to other namespaces, then those nhamespaces must be
declared via aimport element. Thémport element also has an optiohatation attribute that is a

hint to the processor where the definitions of the imported namespace can be found. However, the proces-
sor may find the definitions by other means, for example, by using a catalog.

After processing aninclude elements and locating the components that belong to any imported names-
paces, the WSDL 2.0 component model for a WSDL 2.0 document will contain a set of components that
belong to the document’'s WSDL 2.0 namespace and any imported namespaces. These components will
refer to each other, usually via QName references. A WSDL 2.0 document is invalid if any component
reference cannot be resolved, whether or not the referenced component belongs to the same or a different
namespace.

We will cover a lot more about how to use WSDL 2.0 import and inclu8elitmporting WSDL] [p.42]

2.3 More on Message Types

Message types may be defined in various schema languages. In this primer, we will only focus on the use
of XML Schema|KML Schema: Structures [p.8Rkince it's natively supported by WSDL 2.0. Message
types defined in other languages may be introduced into a WSQie&diption via extensions, see

the W3C notegAlternative Schema Languages Sugport [pJa®f more details.

The following is the XML syntax for thersdl:types element:

<description>
< types>
<documentation />*
[<xs:import namespace=" xs: anyURI " schemalocation=" xs:anyURI "? /> |
<xs:schema targetNamespace=" xs:anyURl " /> |
ot her extension el enents]*
</ types>
</description>

There are two ways to make XML Schema message definitions visible, or in other words, available for
reference by QName (see WSDL 2.0 PaNVEDL 2.0 Cole [p.83] "OName Resolutidn") in a WSDL
2.0 document: inlining or importing. Inlining is to put the schema definitions directly within an

24

http://www.w3.org/TR/2006/CR-wsdl20-20060106#qnameres

2.3 More on Message Types

xs:schema element undetypes . Importing is to have the schema defined in a separate document and
then bring it into the WSDL definition by using:import directly undettypes .

In the following sections, we will provide examples for the different mechanisms.

2.3.1 Inlining XML Schema

We have already seen an example of using inlined schema definitions in [8ecBobDefining Messagge
[Typed[p.10] . When XML Schema is inlined directly in a WSDL 2.0 document, it uses the existing
top-levelxs:schema element defined by XML Schema to do so, as though a schema file had been
copied and pasted into thgoes element. The schema components defined in the inlined schema are
then available to the containing WSDL 2&scription for reference by QName. For instance, in

[p.7] , the input message of the interface operation "opCheckAvailability" is defined by the
"ghns:checkAvailability" element in the inlined schema.

2.3.2 Importing XML Schema

XML Schema components can be defined in separate schema files and be made available to a WSDL2.0
description by usingxs:import directly undettypes .

There are many cases where one would prefer having schema definitions in separate schema files. One
reason is the reusability of the schema definitions. Inlined schema definitions are only available to the
containing WSDL 2.@lescription . Although WSDL 2.0 provideswsdl:import ~ mechanism for
importing other WSDL files, schema definitions inlined in an imported WSDL document are NOT auto-
matically made available to the importing WSDL 2.0 document, even though other WSDL 2.0 compo-
nents (such as Interfaces, Bindings, etc.) do become available. Therefore, if one wishes to share schema
definitions across several WSDL 218scription s, these schema definitions should instead be placed

in separate XML Schema documents and imported into each WShlegc@iption using

xs:import directly undettypes .

Let's see an example. Assuming the message types in Exanjple 2-3 [p.11] are defined in a separate schema
file named "http://greath.example.com/2004/schemas/resSvc.xsd" with a target namespace
"http://greath.example.com/2004/schemas/resSvc", the schema definition can then be brought into the
WSDL 2.0description usingxs:import . Note that only components in the imported namespace
"http://greath.example.com/2004/schemas/resSvc" are available for reference in the WSDL 2.0 document.

Example 2-8xs: i npor t ed Message Definitions that Are Visible to the Containing WSDL 2.0 Descrip-
tion

<?xml version="1.0" encoding="utf-8" ?>

<description xmIns="http://www.w3.0rg/2006/01/wsdl"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmlins:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlns:ghns = "http://greath.example.com/2004/schemas/resSvc"
>

<types>
<xs:import namespace="http://greath.example.com/2004/schemas/resSvc"
schemalocation= "http://greath.example.com/2004/schemas/resSvc.xsd"/>

25

2.3 More on Message Types

</types>

</description>

It's important to note thats:import used directly undewrsdl:types has been given a different visi-
bility thanxs:import used inside an inlined schema. An inlined schema may use native XML schema
xs:import to bring in external schema definitions that are in different namespaces; However, though
this is the schema importing mechanism recommended for WSDL|1.1 in WS-I Basiq Profile, according to
XML Schema specification, such enclosed message definitions are only visible to the importing schema
(in this case, the inlined schema). They are not visible to the containing WSDé&s21iption

If we chang§ Example 2-8 [p.25] to use XML Schema’s nativinport element in an inlined

schema, the schema components defined in the namespace
http://greath.example.com/2004/schemas/resSvc are not available to our example WSDL 2.0 definition
any more.

Example 2-9xs: i nport ed Message Definitions in Inlined Schema Are Not Visible to the Containing
WSDL 2.0 Description

<?xml version="1.0" encoding="utf-8" ?>

<description xmIns="http://www.w3.0rg/2006/01/wsdlI"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmins:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmlins:ghns = "http://greath.example.com/2004/schemas/resSvc"
o>

<types>
<xs:schema targetNamespace="http://greath.example.com/2004/schemas/resSvcWrapper">
<xs:import namespace="http://greath.example.com/2004/schemas/resSvc"
schemalocation= "http://greath.example.com/2004/schemas/resSvc.xsd"/>
</xs:schema>
</types>

</description>

Of course, an inlined XML schema may also use XML Schema’s ndireclude element to refer to

schemas defined in separate files when the included schema has no namespace or has the same namespace
as the including schema. In this case, according to XML Schema, the included schema components

become a part of the including schema as though they had been copied and pasted into the including
schema. Hence, the included schema components are also available to the containing WSDL 2.0

description for reference by QName.

The following example has the same effedt as Example 2-3 [p.11] :

Example 2-10xs: i ncl uded Message Definitions in Inlined Schema Are Visible to the Containing
WSDL 2.0 Description

26

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDL_and_Schema_Import

2.3 More on Message Types

<?xml version="1.0" encoding="utf-8" ?>

<description xmIns="http://www.w3.0rg/2006/01/wsdI"

targetNamespace= "http://greath.example.com/2004/wsdl/resSvc"

xmins:tns= "http://greath.example.com/2004/wsdl/resSvc"

xmins:ghns = "http://greath.example.com/2004/schemas/resSvc"
L

<types>
<xs:schema targetNamespace="http://greath.example.com/2004/schemas/resSvc">
<xs:include schemalocation= "http:/greath.example.com/2004/schemas/resSvc.xsd"/>
</xs:schema>
</types>

%}description>
2.3.3 Summary of Import and Include Mechanisms

So far we have briefly covered both WSDL import/include and schema import/include. The following
table summarizes the similarities and differences between the WSDL 2.0 and XML Setiecha
andimport mechanisms. We will talk a lot more about importing mechanisf@d.itmporting WSDL|
[p.42] and3.2 Importing SchemaHp.45]

27

2.4 More on Interfaces

Table 2-1. Summary of Import and Include Mechanisms

Visibility of Schema Compo-

e

D

11%

d

1%

to

117

Namespace.

Mechanism Object Meaning
nents
Declare that WSDL 2.0 XML Schema Components in th
components refer to WSDL | : —
. WSDL 2.0 imported Descriptidn componert
wsdl:import 2.0 components from a — -
Namespace are NOT visible to the containin
DIFFERENT targetNames- -
description
pace.
Merge Interface, Binding an ML Schema components in th
9 ’ 9 included Descriptign compo-
Service components from , -
. WSDL 2.0 ent’s {element declarations} ar
wsdl:include Document another WSDL 2.0 documen [ype definfiond} properties are
that has the SAME target- YD brop
visible to the containing
Namespace. -
description
Declare that XML Schema
XML components refer to XML | XML Schema components in th
wsdl:types/ xs:import| Schema Schema components from aimported namespace are visiblg
Namespace | DIFFERENT targetNames- | the containinglescription
pace.
Declare that XML Schema XML Schema components in th
. XML components refer to XML | .
wsdl:types/ | imported namespace are NOT
xs:schema/xs:import Schema Schema components from Aisible to the containing
' ' Namespace | DIFFERENT targetNames- -
description
pace.
Merge XML Schema compo-
wsdl-tvoes/ XML nents from another XML XML Schema components in th
xsségepma/xsinclude Schema Schema document that has| included document are visible tg
' ' Document |the SAME or NO target- the containinglescription

117

2.4 More on Interfaces

We previously mentioned that a WSDL 2.0 interface is basically a set of operations. However, there are
some additional capabilities that we have not yet covered. First, let's review the syntavirftarthe

face element.

2.4.1 Interface Syntax

Below is the XML syntax summary of tlterface
elements andfeature>

mentation>

element, sim
and<property>

28

plified by omitting optionatiocu-

extension elements:

http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Description
http://www.w3.org/TR/2006/CR-wsdl20-20060106#component-Description
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Description.elementdeclarations
http://www.w3.org/TR/2006/CR-wsdl20-20060106#property-Description.typedefinitions

2.4 More on Interfaces

<description targetNamespace=" xs:anyURl " >
<interface name=" XS: NCNane"
extends=" list of xs:Q@ane"?
styleDefault=" list of xs:anyURl"?>
<fault name=" xs: NCNane"
element=" xs: QNane"? >
</fault>*
<operation name=" XxS: NCNane"
pattern=" xs:anyURI "
style=" list of xs:anyURl"?
wsdIx:safe=" xs: bool ean"? >
<input messageLabel=" xs: NCName"?
element=" uni on of xs: Nanme, xs: Token"? >
</input>*
<output messagelLabel=" xs: NCNarme"?
element=" uni on of xs: Q\anme, xs: Token"? >
</output>*
<infault ref=" xs: QName" messagelLabel=" xs: NCName"? > </infault>*
<outfault ref=" xs: QNanme" messagelLabel=" xs: NCNane"? > </outfault>*
</operation>*

</interface>*

</description>

Theinterface element has two optional attributstyleDefault andextends . ThestyleDe-

fault attribute can be used to define a default value fostifle attributes of all operations under this
interface (see WSDL 2.0 Part|1 "styleDefault attribute information item")eXtemds attribute is for
inheritance, and is explained next.

2.4.2 Interface Inheritance

The optionakxtends attribute allows an interface to extend or inherit from one or more other interfaces.
In such cases the interface contains the operations of the interfaces it extends, along with any operations it
defines directly. Two things about extending interfaces deserve some attention.

First, an inheritance loop (or infinite recursion) is prohibited: the interfaces that a given interface extends
must NOT themselves extend that interface either directly or indirectly.

Second, we must explain what happens when operations from two different interfaces have the same target
namespace and operation name. There are two cases: either the component models of the operations are
the same, or they are different. If the component models are the same (per the component comparison
algorithm defined in WSDL 2.0 Part[®WSDL 2.0 Cofle [p.83] " Equivalence of Componefts ") then

29

http://www.w3.org/TR/2006/CR-wsdl20-20060106#Interface_styleDefault_attribute
http://www.w3.org/TR/2006/CR-wsdl20-20060106#compequiv

2.4 More on Interfaces

they are considered to be the same operation, i.e., they are collapsed into a single operation, and the fact
that they were included more than once is not considered an error. (For operations, component equivalence
basically means that the two operations have the same set of attributes and descendants.) In the second
case, if two operations have the same name in the same WSDL 2.0 target namespace but are not equiva-
lent, then it is an error. For the above reason, it is considered good practice to ensure that all operations
within the same target namespace are named uniquely.

Finally, since faults can also be defined as children oihteeface ~ element (as described in the
following sections), the same name-collision rules apply to those constructs.

Let's say the GreatH hotel wants to maintain a standard message log operation for all received messages.
It wants this operation to be reusable across the whole reservation system, so each service will send out,
for potential use of a logging service, the content of each message it receives together with a timestamp
and the originator of the message. One way to meet such requirement is to define the log operation in an
interface which can be inherited by other interfaces. AssumingssagelLog element is already defined

in the ghns namespace with the required content, the inheritance use case is illustrated in the following
example. As a result of the inheritance, thgervationinterface now contains two operations:
opCheckAvailability andopLogMessage

Example 2-11. Interface Inheritance

<description ...>
<interface name = "messageloglInterface” >

<operation name="opLogMessage"
pattern="http://www.w3.0rg/2006/01/wsdl/out-only">
<output messagelLabel="out"
element="ghns:messagelLog" />
</operation>

</interface>
<interface name="reservationinterface" ext ends="tns:messageLoglInterface" >

<operation name="opCheckAvailability"

pattern="http://www.w3.0rg/2006/01/wsdl/in-out"
style="http://www.w3.0rg/2006/01/wsdl/style/iri"
wsdlx:safe = "true">

<input messagelLabel="In"
element="ghns:checkAvailability" />

<output messagelLabel="0ut"
element="ghns:checkAvailabilityResponse" />

<outfault ref="tns:invalidDataFault" messagelLabel="Out"/>

</operation>
<linterface>

</description>

30

2.4 More on Interfaces

Now let's have a look at the element childrenntérface , beginning withfault

2.4.3 Interface Faults

Thefault element is used to declare faults that may occur during execution of operations of an inter-
face. They are declared directly undgerface , and referenced from operations where they apply, in
order to permit reuse across multiple operations.

Faults are very similar to messages and can be viewed as a special kind of message. Both faults and
messages may carry a payload that is normally described by an element declaration. However, WSDL 2.0
treats faults and messages slightly differently. The messages of an operation directly refer to their element
declaration, however the faults of an operation indirectly refer to their element declaration via a fault
element that is defined on the interface.

The reason for defining faults at the interface level is to allow their reuse across multiple operations. This
design is especially beneficial when bindings are defined, since in binding extensions like SOAP there is
additional information that is associated with faults. In the case of SOAP, faults have codes and subcodes
in addition to a payload. By defining faults at the interface level, common codes and subcodes can be
associated with them, thereby ensuring consistency across all operations that use the faults

Thefault element has a requireéme attribute that must be unique within the paiatdrface

element, and permits it to be referenced from operation declarations. The cgitomahit attribute can

be used to indicate a schema for the content or payload of the fault message. Its value should be the
QName of a global element defined in thpes section. Please note that when other type systems are
used to define the schema for a fault message, additional attributes may need to be defined via WSDL
2.0's attribute extension mechanism to allow the schema to be associated with the fault.

2.4.4 Interface Operations

As shown earlier, theperation element is used to indicate an operation supported by the containing
interface. It associates message schemas with a message exchange pattern (MEP), in order to abstractly
describe a simple interaction with a Web service.

2.4.4.1 Operation Attributes
An operation has two required attributes and one optional attribute:
® A requiredname attribute, as seen already, which must be unique within the interface.

® A requiredpattern attribute whose value must be an absolute URI that identifies the desired MEP
for theoperation . MEPs are further explained[24.4.3 Understanding Message Exchange
[Patterns (MEPs)[p.33] .

® An optionalstyle attribute whose value is a list of absolute URIs. Each URI identifies a certain set
of rules that were followed in defining troperation . It is an error if a particular style is indi-
cated, but the associated rules are not folloMtEIDL 2.0 Adjuncts [p.83]defines a set of styles,
including

31

2.4 More on Interfaces

O RPC Style. The RPC style is selected whersthile is assigned the value
http://iwww.w3.0rg/2006/01/wsdl/rpc. It places restrictions for Remote Procedure Call-types of
interactions.

O IRI Style. The IRI style is selected when 8igle is assigned the value
http://lwww.w3.0rg/2006/01/wsdl/stylef/iri. It places restrictions on message definitions so they
may be serialized into something like HTTP URL encoded.

O The Multipart style. The Multipart style is selected whenstiyée is assigned the value
http://lwww.w3.0rg/2006/01/wsdl/style/multipart. In the HTTP binding, for XForms clients, a
message must be defined following the Multipart style and serialized as "Multipart/form-data".

You can find more details of these WSDL 2.0 predefined styles. SEctidRPC Styl¢[p.58]
provides an example of using the R&gle . [WSDL 2.0 Adjuncts [p.83]provides examples for
the IRI style and Multipart style.

Note that[JVSDL 2.0 Adjunds [p.83]provides a predefined extension for indicating operation safety.
ThewsdIx:safe global attribute whose value is a boolean can be used with an operation to indicate
whether the operation is asserted to be "safe" (as defined in Section 3.5 of the Web Arciitéstiure |

[p.83]) for clients to invoke. In essence, a safe operation is any operation that does not give
the client any new obligations. For example, an operation that permits the client to check prices on prod-
ucts typically would not obligate the client to buy those products, and thus would be safe, whereas an
operation for purchasing products would obligate the client to pay for the products that were ordered, and
thus would not be safe.

An operation should be marked safe (by usingitbélx:safe and by setting its value to "true") if it
meets the criteria for a safe interaction defined in Section 3.5 of the Web Archit§¢alré\[chitecture
[p.83]], because this permits the infrastructure to perform efficiency optimizations, such as pre-fetch,
re-fetch and caching.

The default value of this attribute is false. If it is false or is not set, then no assertion is made about the
safety of the operation; thus the operation may or may not be safe.

2.4.4.2 Operation Message References

An operation will also haveinput , output ,infault , and/oroutfault element children that
specify the ordinary and fault message types to be used by that operation. The MEP specified by the
pattern attribute determines which of these elements should be included, since each MEP has place-
holders for the message types involved in its pattern.

Since operations were already discussgtiind Defining an Interfac¢[p.12] , this section will merely
comment on additional capabilities that were not previously explained.

32

2.4 More on Interfaces

2.4.4.2.1 The messagelabel Attribute

ThemessagelLabel attribute of thenput andoutput elements is optional. It is not necessary to
explicitly set themessageLabel when the MEP in use is one of the eight MEPs predefined in WSDL
2.0 Part 2)\WSDL 2.0 Adjuncts [p.83]and it has only one message with a given direction.

2.4.4.2.2 The element Attribute

Theelement attribute of thenput andoutput elements is used to specify the message content
schema (aka payload schema) when the content model is defined using XML Schema. As we have seen
already, it can specify the QName of an element schema that was definetypethesection. However,
alternatively it can specify one of the following tokens:

#any
The message content is any single element.
#none
There is no message content, i.e., the message payload is empty.
#other
The message content is described by a non-XML type system. Extension attributes specify the type.

Theelement attribute is also optional. If it is not specified, then the message content is described by a
non-XML type system.

Note that there are situations that the information conveyed ela@heent attribute is not sufficient for

a service implementation to uniquely identify an incoming message and dispatch it to an appropriate oper-
ation. In such situations, additional means may be required to aid identifying an incoming message. See
[5.1 Enabling Easy Message Dispat{ip.62] for more detail.

2.4.4.2.3 Multiple infault or outfault Elements

Wheninfault ~ and/oroutfault ~ occur multiple times within aaperation , they define alternative
fault messages.

2.4.4.3 Understanding Message Exchange Patterns (MEPS)

WSDL 2.0 message exchange patterns (MEPS) are used to define the sequence and cardinality of the
abstract messages in an operation. By design, WSDL 2.0 MEPs are abstract. First of all, they abstract out
specific message types. MEPs identify placeholders for messages, and placeholders are associated with
specific message types when an operation is defined, which includes specifying which MEP to use for that
operation. Secondly, unless explicitly stated otherwise, MEPs also abstract out binding-specific informa-
tion like timing between messages, whether the pattern is synchronous or asynchronous, and whether the
messages are sent over a single or multiple channels.

33

2.4 More on Interfaces

It's worth pointing out that WSDL 2.0 MEPs do not exhaustively describe the set of messages that may be
exchanged between a service and other nodes. By some prior agreement, another node and/or the service
may send other messages (to each other or to other nodes) that are not described by the MEP. For instance,
even though an MEP may define a single message sent from a service to one other node, a service defined
by that MEP may multicast that message to other nodes. To maximize reuse, WSDL 2.0 message

exchange patterns identify a minimal contract between other parties and Web Services, and contain only
information that is relevant to both the Web service and the client that engages that service.

A total of eight MEPs are defined (#MSDL 2.0 Adjuncts [p.83] These MEPs should cover the most

common use cases, but they are not meant to be an exhaustive list of MEPs that can ever be used by opera-
tions. More MEPs can be defined for particular application needs by interested parti@s4 &8ge

[Understanding Message Exchange Patterns (MERE).33])

For the eight MEPs defined by WSDL 2.0, some of them are variations of others based on how faults may
be generated. For example, the In-Only pattern ("http://www.w3.0rg/2006/01/wsdl/in-only") consists of
exactly one message received by a service from some other node. No fault can be generated. As a varia-
tion of In-Only, Robust In-Only pattern ("http://www.w3.0rg/2006/01/wsdl/robust-in-only") also consists

of exactly one message received by a service, but in this case faults can be triggered by the message and
must be delivered to the originator of the message. If there is no path to this node, the fault must be
discarded. For details about the common fault generation models used by the eight WSDL 2.0 MEPs, see
[WSDL 2.0 Adjuncts [p.83]

Depending on how the first message in the MEP is initiated, the eight WSDL 2.0 MEPs may be grouped
into two groups: in-bound MEPSs, for which the service receives the first message in the exchange, and
out-bound MEPSs, for which the service sends out the first message in the exchange. (Such grouping is not
provided in the WSDL 2.0 specification and is presented here only for the purpose of easy reference in this
primer).

A frequently asked question about out-bound MEPs is how a service knows where to send the message.
Services using out-bound MEPSs are typically part of large scale integration systems that rely on mapping
and routing facilities. In such systems, out-bound MEPs are useful for specifying the functionality of a
service abstractly, including its requirements for potential customers, while endpoint address information
can be provided at deployment or runtime by the underlying integration infrastructure. For example, the
GreatH hotel reservation system may require that every time a customer interacts with the system to check
availability, data about the customer must be logged by a CRM system. At design time, it's unknown

which particular CRM system would be used together with the reservation system. To address this require-
ment, we may change the "reservationinterface™ in Exampgle 2-1 [p.7] to include an out-bound loginquiry
operation. Thigoglnquiry operation advertises to potential service clients that customer data will be
made available by the reservation service at run time. When the reservation service is deployed to
GreatH’s IT landscape, appropriate configuration time and run time infrastructure will help determine
which CRM system will get the customer data and log it appropriately. It's worth noting that in addition to
being used by a CRM system for customer management purpose, the same data may also be used by a
system performance analysis tool for different purpose. Providing an out-bound operation in the reserva-
tion service enables loose coupling and so improves the overall GreatH IT landscape’s flexibility and scal-
ability.

34

2.5 More on Bindings

Example 2-12. Use of outbound MEPs

<description ...>
<interface name="reservationinterface">
<operation name="opCheckAvailability" ... >
<operation name="opLogInquiry"
pattern="http://ww. w3. or g/ 2006/ 01/ wsdl / out - onl y" >
< out put messagelLabel ="Qut" el ement ="ghns: cust omer Dat a" />
</operation>

</interface>

</description>

Although the eight MEPs defined in WSDL 2.0 Paft\’SDL 2.0 Adjundts [p.83]are intended to cover
most use cases, WSDL 2.0 has designed this set to be extensible. This is why MEPs are identified by URIs
rather than a fixed set of tokens.

For more about defining new MEPs, geg Defining New MEPHp.55] .

2.5 More on Bindings

Bindings are used to supply protocol and encoding details that shewifpessages are to be sent or
received. Eachinding element uses a particulinding extensiomo specify such information. WSDL
2.0 Part 2)\WSDL 2.0 Adjuncts [p.83]defines several binding extensions that are typically used.
However, binding extensions that are not defined in WSDL 2.0 Part 2 can also be used, provided that
client and service toolkits support them.

Binding information must be supplied for every operation in the interface that is used in an endpoint.
However, if the desired binding extension provides suitable defaulting rules, then the information will
only need to be explicitly supplied at the interface level, and the defaulting rules will implicitly propagate
the information to the operations of the interface. For example, see the Default Binding Rules of SOAP
binding extension in WSDL 2.0 Part{&/EDL 2.0 Adjungts [p.83]

2.5.1 Syntax Summary for Bindings

Since bindings are specified using extensions to the WSDL 2.0 language (i.e., binding extensions are not
in the WSDL 2.0 namespace), the XML for expressing a binding will consist of a mixture of elements and
attributes from WSDL 2.0 namespace and from the binding extension’s namespace, using WSDL 2.0’s
open content model.

Here is a syntax summary foinding , simplified by omitting optionadlocumentation , feature

andproperty elements. Bear in mind that this syntax summary only shows the elements and attributes
defined within the WSDL 2.0 namespace. When an actual binding is defined, elements and attributes from
the namespace of the desired binding extension will also be intermingled as required by that particular
binding extension.

35

http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106#soap-defaults

2.5 More on Bindings

<description targetNamespace=" xs:anyURl " >
< bi ndi ng name=" xs: NCNane" interface=" xs: QName"? >
<fault ref=" Xs: QName" > </fault>*
<operation ref=" xs: QName" >
<input messageLabel=" xs: NCName"? > </input>*
<output messagelLabel=" xs: NCNane"? > </output>*
<infault ref=" xs: QName" messagelLabel=" xs: NCName"? > </infault>*
<outfault ref=" xs: QNanme" messagelLabel=" xs: NCNane"? > </outfault>*
</operation>*
</ bi ndi ng>*

</description>

Thebinding syntax parallels the syntax ioterface : each interface construct has a binding counter-
part. Despite this syntactic similarity, they are indeed different constructs, since they are in different
symbol spaces and are designed for different purposes.

2.5.2 Reusable Bindings

A binding can either be reusable (applicable to any interface) or non-reusable (specified for a particular
interface). Non-reusable bindings may be specified at the granularity of the interface (assuming the

binding extension provides suitable defaulting rules), or on a per-operation basis if needed. A non-reusable
binding was demonstrated|2nl.5 Defining a Binding[p.15] .

To define a reusable binding, thimding element simply omits thiaterface attribute and omits

specifying any operation-specific and fault-specific binding details. Endpoints can later refer to a reusable
binding in the same manner as for a non-reusable binding. Thus, a reusable binding becomes associated
with a particular interface when it is referenced from an endpoint, because an endpoint is part of a service,
and the service specifies a particular interface that it implements. Since a reusable binding does not specify
an interface, reusable bindings cannot specify operation-specific details. Therefore, reusable bindings can
only be defined using binding extensions that have suitable defaulting rules, such that the binding informa-
tion only needs to be explicitly supplied at the interface level.

2.5.3 Binding Faults

A bindingfault associates a concrete message format with an abstract fault of an interface. It describes
how faults that occur within a message exchange of an operation will be formatted, since the fault does not
occur by itself. Rather, a fault occurs as part of a message exchange specified by an opendsion

and its binding counterpart, the bindiogeration

A bindingfault has one requiregef attribute which is a reference, by QName, torderface

fault . It identifies the abstract interfatault for which binding information is being specified. Be
aware that the value o#f attribute of all thdaults under ainding must be unique. That is, one
cannot define multiple bindings for the same interface fault within a ¢iveling

36

2.5 More on Bindings

2.5.4 Binding Operations

A bindingoperation describes a concrete binding of an interface operation to a concrete message
format. An interface operation is uniquely identified by the WSDL 2.0 target namespace of the interface
and the name of the operation within that interface, via the reqeifedttribute of bindingpera-

tion . As with faults, for eacbperation within abinding , the value of theef attribute must be
unique.

2.5.5 The SOAP Binding Extension

The WSDL 2.0 SOAP Binding Extension (see WSDL 2.0 Paw3DL 2.0 Adjuncts [p.83) was
primarily designed to support the features of SOAP[SQAP 1.2 Part 1: Messaging Framework [p.84]
]. However, for backwards compatibility, it also provides some support for SOABQAH 1.[L [p.84].

An example using the WSDL 2.0 SOAP binding extension was already presqatedibefining g
[Binding][p.15] , but some additional points are worth mentioning:

® Because the same binding extension is used for both SOAP 1.2 and SOARsbapaersion
attribute is provided to allow you to indicate which version of SOAP you want. If this attribute is not
specified, it defaults to SOAP 1.2.

e The WSDL 2.0 SOAP binding extension defines a set of default rules, so that bindings can be speci-
fied at the interface level or at the operation level (or both), with the operation level taking prece-
dence. However, it does not define default binding rules for faults. Thus, if a given interface defines
any faults, then corresponding binding information must be explicitly provided for each such fault.

e |f HTTP is used as the underlying protocol, then the binding can (and should) control whether each
operation will use HTTP GET or POST. ($&86.7 HTTP GET Versus POST: Which to Usg?

[p.41] .)

Here is an example that illustrates both a SOAP 1.2 binding (as seen before) and a SOAP 1.1 binding.

Example 2-13. SOAP 1.2 and SOAP 1.1 Bindings

<?xml version="1.0" encoding="utf-8" ?>

<description
xmlns="http://www.w3.0rg/2006/01/wsdI"
targetNamespace="http://greath.example.com/2004/wsdl/resSvc"
xmins:tns="http://greath.example.com/2004/wsdl/resSvc"
xmins:ghns="http://greath.example.com/2004/schemas/resSvc"
xmlins:wsoap="http://www.w3.0rg/2006/01/wsdl/soap"
xmins:soap="http://www.w3.0rg/2003/05/soap-envelope”
xmins:soapll="http://[schemas.xmlsoap.org/soap/envelope/">

<!-- SOAP 1.2 Binding -->

<binding name="reservationSOAPBInding"
interface="tns:reservationinterface"
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP">

37

2.5 More on Bindings

<operation ref="tns:opCheckAvailability"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/request-response"/>

<fault ref="tns:invalidDataFault"
wsoap:code="soap:Sender"/>

</binding>

<!-- SOAP 1.1 Binding -->

<binding name="reservationSOAP11Binding"
interface="tns:reservationinterface"
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:version="1.1"
wsoap:protocol="http://www.w3.0rg/2006/01/soapl1/bindings/HTTP">

<operation ref="tns:opCheckAvailability"/>

<fault ref="tns:invalidDataFault"
wsoap:code="soapl1l:Client"/>

</binding>

<service name="reservationService"
interface="tns:reservationInterface">

<!-- SOAP 1.2 End Point -->

<endpoint name="reservationEndpoint"
binding="tns:reservationSOAPBinding"
address="http://greath.example.com/2004/reservation"/>

<!-- SOAP 1.1 End Point -->

<endpoint name="reservationEndpoint2"
binding="tns:reservationSOAP11Binding"
address="http://greath.example.com/2004/reservation"/>

</service>
</description>

2.5.5.1 Explanation of Example

Most lines in this example is the same as previously explaif&d. b Defining a Binding[p.15] , so
we’ll only point out lines that are demonstrating something new for SOAP 1.1 binding.

<description ... xmiIns:soapll="http://schemas.xmlsoap.org/soap/enve-
lope/">

This is the namespace for terms defined within the SOAP 1.1 specifi{@@&F 1.1l [p.84].

<binding...wsoap:version="1.1"

38

2.5 More on Bindings

This line indicates that this binding uses SOAP [IWVEPL 2.0 SOAP 1.1 Binding [p.8BJrather
than SOAP 1.2.

wsoap:protocol="http://mww.w3.0rg/2005/05/soap11/bindings/HTTP">

This line specifies that HTTP should be used as the underlying transmission protocol. Bée7lso

[HTTP GET Versus POST: Which to Usef{p.41] .

<operation ref="tns:opCheckAvailability"/>

Note thatwsoap:mep is not applicable to SOAP 1.1 binding.
<fault...wsoap:code="soapl1l:Client"/>

This line specifies the SOAP 1.1 fault code that will be used in transmitting invalidDataFault.

2.5.6 The HTTP Binding Extension

In addition to the WSDL 2.0 SOAP binding extension described above, WSDL 2.0 [AZ802[2.9

[p.83] defines a binding extension for HTTP IIlETF RFC 261p [p.84] and HTTPS[[ETH

[p.84], so that these protocols can be used natively to send and receive messages, without first
encoding them in SOAP.

The HTTP binding extension provides many features to control;

e \Which HTTP operation will be used. (GET, PUT, POST, DELETE, and other HTTP operations are
supported.)

® Input, output and fault serialization
e Transfer codings

® Authentication requirements

® Cookies

e HTTP over TLS (https)

As with the WSDL 2.0 SOAP binding extension, the HTTP binding extension also provides defaulting
rules to permit binding information to be specified at the interface level and used by default for each oper-
ation in the affected interface, however, defaulting rules are not provided for binding faults.

Here is an example of using the HTTP binding extension to check hotel room availability at GreatH.

Example 2-14. HTTP Binding Extension

<?xml version="1.0" encoding="utf-8" ?>
<description xmIns="http://www.w3.0rg/2006/01/wsdl"

xmins:whttp="http://www.w3.0rg/2006/01/wsdl/http" >

39

2.5 More on Bindings

<binding name="reservationHTTPBinding"
interface="tns:reservationinterface"
type="http://www.w3.0rg/2006/01/wsdl/http"
whttp:methodDefault="GET">

<operation ref="tns:opCheckAvailability"
whttp:location="{checkIinDate}" />
</binding>

<service name="reservationService"
interface="tns:reservationInterface">

<!l-- HTTP 1.1 GET End Point -->
<endpoint name="reservationEndpoint"
binding="tns:reservationHTTPBinding"
address="http://greath.example.com/2004/checkAvailability/"/>
</service>

</description>

2.5.6.1 Explanation of Example

Most of this example is the same as previously explaingdlib Defining a Binding[p.15] , so we'll
only point out lines that are demonstrating something new for HTTP binding extension.

<description...xmlns:whttp="http://www.w3.0rg/2006/01/wsdl/http" >

This defines the namespace prefix for elements and attributes defined by the WSDL 2.0 HTTP
binding extension.

<binding...type="http://www.w3.0rg/2006/01/wsdl/http"

This declares the binding as being an HTTP binding.
whttp:methodDefault="GET">

The default method for operations in this interface will be HTTP GET.
whttp:location="{checkIinDate}" >

Thewhttp:location attribute specifies a pattern for serializing input message instance data into

the path component of the request URI. The default binding rules for HTTP specify that the default
input serialization for GET iapplication/x-www-form-urlencoded . Curly braces are

used to specify the name of a schema type in the input message schema, which determines what input
instance data will be inserted into the path component of the request URI. The curly brace-enclosed
name will be replaced with instance data in constructing the path component. Remaining input
instance data (not specified Wttp:location) will either be serialized into the query string

portion of the URI or into the message body, as follows: if a "/" is appended to a curly brace-enclosed
type name, then any remaining input message instance data will be serialized into the message body.

40

2.5 More on Bindings

Otherwise it will be serialized into query parameters.

Thus, in this example, each of the elements in@eckAvailability type will be serialized
into the query parameters. A sample resulting URI would therefore be
http://greath.example.com/2004/checkAvailability/5-5-5?checkOut-
Date=6-6-5&roomType=foo

Here is an alternate example that appends "/" to the type name in order to serialize the remaining instance
data into the message body:

Example 2-15. Serializing a Subset of Types in the Path

<operation ref="tns:opCheckAvailability"
whttp:location="bycheckinDate/{checkinDate/}" >

This would instead serialize to a request URI such as:
http://greath.example.com/2004/checkAvailability/bychecklinDate/5-5-5
The rest of the message content would go to the HTTP message body.

2.5.7 HTTP GET Versus POST: Which to Use?

When a binding using HTTP is specified for an operation, the WSDL 2.0 author must decide which HTTP
method is appropriate to use -- usually a choice between GET and POST. In the context of the Web as a
whole (rather than specifically Web services), the W3C Technical Architecture Group (TAG) has
addressed the question of when it is appropriate to use GET, versus when to use POST, in a finding enti-
tled URIs, Addressability, and the use of HTTP GET and P@MS3BC TAG Finding: Use of HTTP GET

[p-85]]). From the abstract:

". .. designers should adopt [GET] for safe operations such as simple queries. POST is appropriate for
other types of applications where a user request has the potential to change the state of the resource (or of
related resources). The finding explains how to choose between HTTP GET and POST for an application
taking into account architectural, security, and practical considerations.

Recall that the concept of a safe operation was discus@eidnl Operation Attributeg[p.31] .

(Briefly, a safe operation is one that does not cause the invoker to incur new obligations.) Although the
wsdlx:safe attribute of an interface operation indicates that the abstract operation is safe, it does not
automatically cause GET to be used at the HTTP level when the binding is specified. The choice of GET
or POST is determined at the binding level:

e |f the WSDL 2.0 SOAP binding extension is uggdb(5 The SOAP Binding Extensigiip.37]),
with HTTP as the underlying transport protocol, then GET may be specified by setting:

wsoap:protocol="http://mww.w3.0rg/2003/05/soap/bindings/HTTP"

on thebinding element (to indicate the use of HTTP as the underlying protocol); and

41

3. Advanced Topics I: Importing Mechanisms

wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/soap-response/"

on the bindingperation element, which causes GET to be used by default.

e |f the WSDL 2.0 HTTP binding extension is used dire@p (6 The HT TP Binding Extensioh
[p-39]), GET may be specified by setting either:

whttp:methodDefault="GET"
on thebinding element; or
whttp:method="GET"

on the bindingperation element, which overrideshttp:methodDefault if set on the
binding element; or

wsdlx:safe="true"

on the boundhterface operation . When the above two items are not explicitly set, and
when the bound interface operation is marked safe, the HTTP Binding will by default set the
method to GET.

For example, in the GreatH interface definition showin in Example 2-4 [p.12] , the wsdlx:safe attribute is
set to "true". The HTTP binding definition[in Example 2-14 [p.39] may take advantage of that and be
simplified as below and still have the http method set to GET by default:

Example 2-16. Safety and HTTP Binding
<?xml version="1.0" encoding="utf-8" ?>
<binding name="reservationHTTPBinding"
interface="tns:reservationInterface"
type="http://www.w3.0rg/2006/01/wsdl/http" >
<operation ref="tns:opCheckAvailability"
whttp:location="{checkinDate}"/>

</binding>

3. Advanced Topics I: Importing Mechanisms

3.1 Importing WSDL

In some circumstances WSDL authors may want to split up a Web service description into two or more
documents. For example, if a description is getting long or is being developed by several authors, then it is
convenient to divide it into several parts. Another very important case is when you expect parts of the
description to be reused in several contexts. Clearly it is undesirable to cut and paste sections of one docu-

42

3.1 Importing WSDL

ment into another, since that is error prone and leads to maintenance problems. More importantly, you
may need to reuse components that belong to a wsdl:targetNamespace that is different than that of the
document you are writing, in which case the rules of WSDL 2.0 prevent you from simply cutting and
pasting them into your document.

To solve these problems, WSDL 2.0 provides two mechanisms for modularizing Web service description
documentsimport andinclude . This section discusses the import mechanism and describes some
typical cases where it may be used.

Theimport mechanism lets one refer to the definitions of Web service components that belong to other
namespaces. To illustrate this, consider the GreatH hotel reservation service. Suppose that the reservation
service uses a standard credit card validation service that is provided by a financial services company.
Furthermore, suppose that companies in the financial services industry decided that it would be useful to
report errors in credit card validation using a common set of faults, and have defined these faults in the
following Web service description:

Example 3-1. Standard Credit Card Validation Faults (credit-card-faults.wsdl)

<?xml version="1.0" encoding="utf-8" ?>

<description xmIns="http://www.w3.0rg/2006/01/wsdlI"
targetNamespace="http://finance.example.com/CreditCards/wsdl"
xmins:tns="http://finance.example.com/CreditCards/wsdl"
xmins:cc="http://finance.example.com/CreditCards/xsd">

<documentation>
This document describes standard faults for use
by Web services that process credit cards.
</documentation>

<types>
<xs:import xmIns:xs="http://www.w3.0rg/2001/XMLSchema"
namespace="http://finance.example.com/CreditCardFaults/xsd"
schemalocation="credit-card-faults.xsd" />
</types>

<interface name="creditCardFaults">

<fault name="cancelledCreditCard" element="cc:CancelledCreditCard">
<documentation>Thrown when the credit card has been cancelled.</documentation>
<ffault>

<fault name="expiredCreditCard" element="cc:ExpiredCreditCard">
<documentation>Thrown when the credit card has expired.</documentation>
<[fault>

<fault name="invalidCreditCardNumber" element="cc:InvalidCreditCardNumber">
<documentation>Thrown when the credit card number is invalid.
This fault will occur if the wrong credit card type is specified.
</documentation>
</fault>

<fault name="invalidExpirationDate" element="cc:InvalidExpirationDate">

<documentation>Thrown when the expiration date is invalid.</documentation>
</fault>

43

3.1 Importing WSDL

</interface>

</description>

This example defines an interfaceeditCardFaults , that contains four faultsancelledCred-
itCard , expiredCreditCard , invalidCreditCardNumber , andinvalidExpira-
tionDate . These components belong to the nameshptp#d/finance.example.com/Cred-
itCards/wsdl

Because these faults are defined in a different wsdl:targetNamespace than the one used by the GreatH
Web service description, import must be used to make them available within the GreatH Web service
description, as shown in the following example:

Example 3-2. Using the Standard Credit Card Validation Faults (use-credit-card-faults.wsdl)

<?xml version="1.0"?>

<description
targetNamespace="http://greath.example.com/2004/wsdl/resSvc"
xmins:ghns="http://greath.example.com/2004/schemas/resSvc"
xmins:cc="http://finance.example.com/CreditCards/wsdl"
xmins="http://www.w3.0rg/2006/01/wsdl"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<documentation>
Description: The definition of the reservation Web service of
GreatH hotel. Author: Joe Somebody Date: 05/17/2004
</documentation>

<import namespace="http://finance.example.com/CreditCards/wsdl"
location="credit-card-faults.wsdl"/>

<interface name="reservation" extends="cc:creditCardFaults">

<operation name="makeReservation"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">

<input messageLabel="In" element="ghns:makeReservation" />

<output messagelLabel="Out"
element="ghns:makeReservationResponse" />

<outfault ref="invalidDataFault" messageLabel="Out" />

<outfault ref="cc:cancelledCreditCard" messagelLabel="Out" />
<outfault ref="cc:expiredCreditCard" messageLabel="Out" />
<outfault ref="cc:invalidCreditCardNumber" messagelLabel="Out" />
<outfault ref="cc:invalidExpirationDate" messagelLabel="Out" />
</operation>
</interface>
</description>

44

3.2 Importing Schemas

The hotel reservation service declares that it is using components from another namespace via the
import > element. The import element has a requitachespace attribute that specifies the other
namespace, and an optiof@dation attribute that gives the processor a hint where to find the descrip-
tion of the other namespace. THeservation interface extends theeditCardFault interface

from the other namespace in order to make the faults available in the reservation interface. Finally, the
makeReservation operation refers to the standard faults irvitfault ~ elements.

Another typical situation for using imports is to define a standard interface that is to be implemented by
many services. For example, suppose the hotel industry decided that it was useful to have a standard inter-
face for making reservations. This interface would belong to some industry association namespace, e.g.

http://hotels.example.com/reservations/wsdl . Each hotel that implemented the stan-
dard reservation service would define a service in its own namespace, e.g.
http://greath.example.com/2004/wsdl/resSvc . The description of each service would
import thehttp://hotels.example.com/reservations/wsdl namespace and refer to the

standard reservation interface in it.

3.2 Importing Schemas

WSDL 2.0 documents may contain one or more XML schemas defined withiwrsth#ypes element.
This section illustrates the correct way to refer to these schemas, both from within the same document and
from other documents.

3.2.1 Schemas in Imported Documents

In this example, we consider some GreatH Hotel Web services that retrieve and update reservation details.
The retrieval Web service is defined in tierieveDetails.wsdl WSDL 2.0 document, along with

a schema for the message format. The updating Web service is definedpdabeDetails.wsdl

WSDL 2.0 document which imports the first document and refers to both WSDL 2.0 and schema defini-
tions contained in the imported document.

[p.45] shows the definition of the retrieval Web service in the
http://greath.example.com/2004/services/retrieveDetails namespace. This
WSDL 2.0 document also contains an inline schema that describes the reservation detail in the
http://greath.example.com/2004/schemas/reservationDetails namespace. This
schema is visible to thetrieveDetailsInterface interface definition which refers to it in the
retrieve operation’s output message.

Example 3-3. The Retrieve Reservation Details Web Service: retrieveDetails.wsdl

<?xml version="1.0" encoding="utf-8" ?>
<description xmIns="http://www.w3.0rg/2006/01/wsdI"
targetNamespace="http://greath.example.com/2004/services/retrieveDetails"
xmins:tns="http://greath.example.com/2004/services/retrieveDetails"
xmins:wdetails="http://greath.example.com/2004/schemas/reservationDetails"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<documentation>
This document describes the GreatH Retrieve Reservation Details
Web service.

</documentation>

45

3.2 Importing Schemas

<types>
<xs:schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://greath.example.com/2004/schemas/reservationDetails">

<xs:element name="reservationDetails">
<xs:complexType>
<xs:sequence>
<xs:element name="confirmationNumber"
type="string" />
<xs:element name="checkInDate" type="date" />
<xs:element name="checkOutDate" type="date" />
<xs:element name="roomType" type="string" />
<xs:element name="smoking" type="boolean" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
</types>

<interface name="retrieveDetailsInterface">

<operation name="retrieve"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">

<output messageLabel="Out"
element="wdetails:reservationDetails" />
</operation>
</interface>

</description>

Example 3-# [p.47] shows the definition of the updating Web service in the

http://greath.example.com/2004/services/updateDetails namespace. Thegdat-
eDetailsInterface interface extends thretrieveDetailsInterface interface. However,
theretrieveDetailsInterface belongs to the
http://greath.example.com/2004/services/retrieveDetails namespace, so
updateDetails.wsdl must importretrieveDetails.wsdl to make that namespace visible.
TheupdateDetailsInterface interface also uses theservationDetails element definition
that is contained in the inline schema of the importideveDetails.wsdl document. However,
this schema is not automatically visible within timlateDetails.wsdl document. To make it

visible, theupdateDetails.wsdl document must import the namespace of the inline schema within

thetypes element using the XML schenmaport element.

In this example, thechemalocation attribute of themport element has been omitted. The
schemalocation attribute is a hint to the WSDL 2.0 processor that tells it where to look for the

imported schema namespace. However, the WSDL 2.0 processor has already processed the
retrieveDetails.wsdl document which contains the imported namespace in an inline schema so it
should not need any hints. However, this behavior depends on the implementation of the processor and so
cannot be relied on.

Although the WSDL 2.0 document may validly omit 8ehemalocation attribute, it is a best practice
to either provide a reliable value for it or move the inline schema into a separate docunresgrsay
vationDetails.xsd , and directly import it in thgypes element of bothetrieveDe-

tails.wsdl andupdateDetails.wsdl . In general, schemas that are expected to be referenced

46

3.2 Importing Schemas

from more than one WSDL 2.0 document should be defined in a separate schema document rather than be
inlined.

Example 3-4. The Update Reservation Details Web Service: updateDetails.wsdl

<?xml version="1.0" encoding="utf-8" ?>

<description xmIns="http://www.w3.0rg/2006/01/wsdl"
targetNamespace="http://greath.example.com/2004/services/updateDetails"
xmins:tns="http://greath.example.com/2004/services/updateetails"
xmins:retrieve="http://greath.example.com/2004/services/retrieveDetails"
xmins:details="http://greath.example.com/2004/schemas/reservationDetails"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<documentation>
This document describes the GreatH Update Reservation Details
Web service.

</documentation>

<import
namespace="http://greath.example.com/2004/services/retrieveDetails"
location="retrieveDetails.wsdl" />

<types>
<xs:import
namespace="http://greath.example.com/2004/schemas/reservationDetails" />
</types>

<interface nhame="updateDetailsInterface"
extends="retrieve:retrieveDetailsInterface">

<operation name="update"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">
<input messageLabel="In"
element="details:reservationDetails" />
<output messageLabel="Out"
element="details:reservationDetails" />
</operation>

<f/interface>

</description>

3.2.2 Multiple Inline Schemas in One Document

A WSDL 2.0 document may define multiple inline schemas ityjies element. The two or more
schemas may have the same target namespace provided that they do not define the same elements or types.
It is an error to define the same element or type more than once, even if the definitions are identical.

Each namespace of an inline schema becomes visible to the Web service definitions. However, the names-
paces are not automatically visible to the other inline schemas. Each inline schema must explicitly import
any other namespace it references. 3¢cteemalocation attribute is not required in this case since the
WSDL 2.0 processor knows the location of each schema by virtue of having processed the enclosing
WSDL 2.0 document.

47

3.2 Importing Schemas

To illustrate this, considér Example B-5 [p.48] which contains two inline schemas. The

http://greath.example.com/2004/schemas/reservationltems namespace contains
some elements for items that appear in the reservation details. The
http://greath.example.com/2004/schemas/reservationDetails namespace contains
thereservationDetails element which refers to the item elements. The schema for the
http://greath.example.com/2004/schemas/reservationDetails namespace contains

animport element that imports thdtp://greath.example.com/2004/schemas/reser-
vationltems namespace. Nechemalocation attribute is required for this import since the schema
is defined inline in the importing document.

Example 3-5. Multiple Inline Schemas: retrieveltems.wsdl

<?xml version="1.0" encoding="utf-8" ?>

<description xmIns="http://www.w3.0rg/2006/01/wsdl"
targetNamespace="http://greath.example.com/2004/services/retrieveDetails"
xmins:tns="http://greath.example.com/2004/services/retrieveDetails"
xmins:wdetails="http://greath.example.com/2004/schemas/reservationDetails"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<documentation>
This document describes the GreatH Retrieve Reservation Details
Web service.

</documentation>

<types>
<xs:schema targetNamespace="http://greath.example.com/2004/schemas/reservationltems">

<xs:element name="confirmationNumber" type="string" />
<xs:element name="checkinDate" type="date" />
<xs:element name="checkOutDate" type="date" />
<xs:element name="roomType" type="string" />
<xs:element name="smoking" type="boolean" />

</xs:schema>

<xs:schema targetNamespace="http://greath.example.com/2004/schemas/reservationDetails"
xmins:items="http://greath.example.com/2004/schemas/reservationltems">

<xs:import
namespace="http://greath.example.com/2004/schemas/reservationitems" />

<xs:element name="reservationDetails">
<xs:complexType>
<xs:sequence>
<xs:element ref="items:confirmationNumber" />
<xs:element ref="items:checkinDate" />
<xs:element ref="items:checkOutDate" />
<xs:element ref="items:roomType" />
<xs:element ref="items:smoking" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

</types>
<interface name="retrieveDetailsInterface">
<operation name="retrieve"

pattern="http://www.w3.0rg/2006/01/wsdl/in-out">
<input messagelLabel="In" element="#none" />

48

3.2 Importing Schemas

<output messagelLabel="Out"
element="wdetails:reservationDetails" />
</operation>

<finterface>

</description>

3.2.3 The schemalLocation Attribute

In the preceding examples, schemas were defined inline in WSDL 2.0 documents. This section discusses
the correct way to specifyscthemalocation attribute on a schemport element to provide a
processor with a hint for locating these schemas.

[p.47] shows how one WSDL 2.0 document imports a schema defined in another, i.e.

[p.45] . Similarly, Example 8-5 [p.48] shows how one schema in a WSDL 2.0 document
imports another schema defined in the same document. In both of these examptd®ttedoca-

tion attribute was omitted since the WSDL 2.0 processor was assumed to know how to locate the
imported schemas because they were part of the WSDL 2.0 documents being processdubrileo-

cation attribute can be used to give the processor a URI reference that explicitly locates the schemas. A
URI reference is a URI plus an optional fragment identifier that indicates part of the resource. For
schemas, the fragment should identify sbhema element. The simplest way to accomplish this is to use
theid attribute, however XPointer (s@¢Hointer Framewoik [p.85]) can also be used.

3.2.3.1 Using the id Attribute to Identify Inline Schemas

[p.49] shows the use of itieattribute. Both of the inline schemas haveattributes. The
id of thehttp://greath.example.com/2004/schemas/reservationltems schema is
items and the id of théttp://greath.example.com/2004/schemas/reservationDe-

tails schema isletails . Theimport elementin the
http://greath.example.com/2004/schemas/reservationDetails schema uses the id
of thehttp://greath.example.com/2004/schemas/reservationltems schema in the
schemalocation attribute, i.e#items .

Example 3-6. Using Ids in Inline Schemas: schemalds.wsdl

<?xml version="1.0" encoding="utf-8" ?>

<description xmIns="http://www.w3.0rg/2006/01/wsdl"
targetNamespace="http://greath.example.com/2004/services/retrieveDetails"
xmins:tns="http://greath.example.com/2004/services/retrieveDetails"
xmins:wdetails="http://greath.example.com/2004/schemas/reservationDetails"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<documentation>
This document describes the GreatH Retrieve Reservation Details
Web service.

</documentation>

<types>

<xs:schema id="items"
targetNamespace="http://greath.example.com/2004/schemas/reservationltems">

<xs:element name="confirmationNumber" type="string" />
<xs:element name="checkinDate" type="date" />

49

4. Advanced Topics IlI: Extensibility and Predefined Extensions

<xs:element name="checkOutDate" type="date" />
<xs:element name="roomType" type="string" />
<xs:element name="smoking" type="boolean" />

</xs:schema>

<xs:schema id="details"
targetNamespace="http://greath.example.com/2004/schemas/reservationDetails"
xmins:items="http://greath.example.com/2004/schemas/reservationltems">

<xs:import
namespace="http:/greath.example.com/2004/schemas/reservationltems"
schemalocation="#items" />

<xs:element name="reservationDetails">
<xs:complexType>
<xs:sequence>
<xs:element ref="items:confirmationNumber" />
<xs:element ref="items:checkinDate" />
<xs:element ref="items:checkOutDate" />
<xs:element ref="items:roomType" />
<xs:element ref="items:smoking" />
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

</types>
<interface name="retrieveDetailsInterface">

<operation name="retrieve"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">
<input messagelLabel="In" element="#none" />
<output messagelLabel="Out"
element="wdetails:reservationDetails" />
</operation>

<linterface>

</description>

4. Advanced Topics Il Extensibility and Predefined Extensions

4.1 Extensibility

WSDL 2.0 provides two extensibility mechanisms: an open content model, which allows XML elements
and attributes from other (non-WSDL 2.0) XML namespaces to be interspersed in a WSDL 2.0 document;
and Featurgs and Properties. Both mechanisms use URIs to identify the semantics of the extensions. For
extension XML elements and attributes, the namespace URI of the extension element or attribute acts as
an unambiguous name for the semantics of that extension. For Features and Properties, the Feature or
Property is named by a URI.

In either case, the URI that identifies the semantics of an extension should be dereferenceable to a docu-
ment that describes the semantics of that extension. As of this writing, there is no generally accepted stan-
dard for what kind of document that should be. Howevef, the W3J TAG has been discussing the issue
(see TAG issue namespaceDocumeént-8) and is likely to provide guidance at some point.

50

http://www.w3.org/TR/2006/CR-wsdl20-20060106#Feature
http://www.w3.org/TR/2006/CR-wsdl20-20060106#Property
http://www.w3.org/2001/tag/
http://www.w3.org/2001/tag/issues.html?type=1#namespaceDocument-8

4.2 Features and Properties

4.1.1 Optional Versus Required Extensions
Extensions can either be required or optional.

An optional extension is one that the client may either engage or ignore, entirely at its discretion, and is
signaled by attributevsdl:required="false" or the absence of thesdl:required attribute

(because it defaults to false). Thus, a WSDL 2.0 processor, acting on behalf of the client, that encounters
an unknown optional extension can safely ignore it and continue to process the WSDL 2.0 document.
However, it is important to stress that optional extensions are only optionaldetite- not the service.

A service must support all optional and required extensions that it advertises in its WSDL 2.0 document.

A requiredextension is one that must be supported and engaged by the client in order for the interaction to
proceed properly, and is signaled by attribwsell:required="true" . If a WSDL 2.0 processor,

acting on behalf of the client, encounters a required extension that it does not recognize or does not
support, then it cannot safely continue to process the WSDL 2.0 document. In most practical cases, this is
likely to mean that the processor will require manual intervention to deal with the extension. For example,
a client developer might manually provide an implementation for the required extension to the WSDL 2.0
processor.

4.2 Features and Properties

Editorial note: KevinL 20050519

The section is subject to change. Pending on the resolution of the minority opinions filed about Heature
and Property.

After a few successful trials of the reservation service, GreatH decides that it is time to make the
makeReservation operation secure, so that sensitive credit-card information is not being sent across the
public network in a snoopable fashion. We will do this using the WSDL 2.0 Features and Properties mech-
anisms[JVSDL 2.0 Cole [p.83], which is modeled after the Features and Properties mechanism defined

in SOAP 1.2[FOAP 1.2 Part 1: Messaging Framework [p.§4]

To facilitate presentation, this section will assume the existence of a hypothetical security feature named

"http://features.example.com/2005/securityFeature ", which defines, in the abstract,
the idea of message confidentiality. This feature has an associated property, named
"http://features.example.com/2005/securityFeature/securityLevel ", which

defines various safety levels (from 0 meaning clear text, all the way through 10, involving highly complex
cryptographic algorithms with keys in the tens of thousands of bits). We also assume that a SOAP module
(for more about SOAP module, $ee SOAP1.2|spe@ghitl SOAP Modulegp.52]), named
"http://features.example.com/2005/modules/Security ", has been defined, which
implements the security feature described above.

GreatH has chosen an abstract security feature which is standard in the fictitious hotels community, and
has integrated both a SOAP module and a new secure HTTP binding into its infrastructure — both of which
implement the security feature (the SOAP module does this inside the SOAP envelope using headers, and
the secure binding does it at the transport layer). Now they’d like to advertise and control the usage of
these extensions using WSDL 2.0.

51

http://www.w3.org/TR/soap12-part1/#soapmodules

4.2 Features and Properties

4.2.1 SOAP Modules

The first step GreatH takes is to require the usage of the SOAP module in their normal SOAP/HTTP
endpoint, which looks like this:

Example 4-1. Requiring a SOAP Module in an Endpoint

<service name="reservationService"
interface="tns:reservationinterface">

<endpoint name="reservationEndpoint"
binding="tns:reservationSOAPBInding"
address ="http://greath.example.com/2004/reservation">
<wsoap:module uri="http://features.example.com/2005/modules/Security"
required="true"/>
</endpoint>

</service>

This syntax indicates that a SOAP Module is required by this endpoint. This means that anyone using this
endpoint must both understand the specification that the module URI references, and must use that specifi-
cation when communicating with the endpoint in question, which typically means including appropriate
SOAP headers on transmitted messages.

If the "required" attribute was not present, or if it was sefdls€ ", then the<wsoap:module>
syntax would indicate optional the availability of the referenced module, rather than a requirement to
engage it, as explaineddnl.1 Optional Versus Required Extensionfp.51] .

4.2.2 Abstract Features

Since GreatH began the web service improvements, they have been talking to several travel agents. The
possibility of making their simple hotel interface an industry standard amongst a consortium of hotels has
come up, and as such they would like to enable specifying the requirement for the "makeReservation”
operation to be secure at the interface level — in other words indicating that the operation must be secure,
but without specifying exactly how that should concretely be achieved (to enable maximal reuse of the
interface). The next example uses the WSDL 2.0 Feature element to indicate this.

Example 4-2. Declaring an Abstract Feature Requirement

<interface name="reservationinterface">
<operation name="makeReservation">
<feature uri="http://features.example.com/2005/securityFeature"
required="true"/>
... [The rest of the operation is unchanged] . . .
</operation>
<finterface>

52

4.2 Features and Properties

This declaration indicates that understanding of, and compliance with, the specified security feature is
required for all uses of the "makeReservation" operation. The security featbsdriact which means

that although it defines semantics and a level of detail about its general operation, it expects a concrete
component (like a SOAP module or binding) to actually realize the functionality.

By definition, if you understand a SOAP module, you understand which (if any) abstract features it imple-
ments. Therefore, since the security module in this example is defined as an implementation of the abstract
security feature, we know that the use of this module satisfies the requirement to implement the feature.
Therefore users of the HTTP endpoint shown above (with the required SOAP module) will be able to

make use of it. GreatH also defines a new endpoint:

Example 4-3. A SOAP Binding Over a Secure HTTP Protocol

<binding name="reservationSecureSOAPBiInding"
interface="tns:reservationinterface"
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://bindings.example.com/SOAPBindings/secureHTTP">

</binding>
<service name="reservationService">

<endpoint name="secureReservationEndpoint"
binding="tns:reservationSecureSOAPBiInding"
address="https://greath.example.com/2004/secureReservation"/>
</service>

The user will have a choice as to which of the endpoints, and therefore which binding, is to be used, but
they both satisfy the abstract feature requirement specified in the interface.

Note that it is not necessary to declare the abstract feature in order to use/require the SOAP module, or in
order to use/require the secure binding. Abstract feature declarations serve purely to indicate requirements
which must be fulfilled by more concrete components such as modules or bindings. In other words, the
abstract feature declaration allows components such as interfaces to be reused without caring exactly
which SOAP modules or bindings satisfy the feature.

4.2.3 Properties

So far we've discussed how to indicate the availability or the "requiredness” of features and modules.
Often it is not enough to indicate that a particular extension is available/required: you also need some way
to control or parameterize aspects of its behavior. This is achieved by the use of WgRip@rlies

Each feature, SOAP module, or SOAP binding may express a varfgtypaftiesin its specification.

These properties are very much like variables in a programming language. If GreatH would like to indicate
that thesecurityLevel property should be 5 for the "makeReservation” operation, it would look like

this:

53

4.2 Features and Properties

Example 4-4. Defining a Property

<interface name="reservationinterface">
<operation name="makeReservation">
<property
uri="http://features.example.com/2005/securityFeature/securityLevel">
<value>5</value>
</property>
.. . [rest of operation definition] . . .
</operation>
</interface>

Theproperty element specifies which property is to be set. By settingahe element, a toolkit
processing this WSDL 2.0 document is informed that the securityLevel property must be set to 5. The
particular meanings of any such values are up to the implementations of the modules/bindings that use
them. Theproperty element can be placed at many different levels in a WSDL 2.0 document (see
"Property Composition Model" section in WSDL 2.0 PaftMSDL 2.0 Cofle [p.83)]).

It is also possible to providecanstrainton the value space for a given property. This allows the author of
the WSDL 2.0 document to indicate that several valid values for the property are possible for a given
scope, limiting the value space already described in the specification that defined the property. Let's
extend our example to make this clearer.

The security feature specification defines securityLevel as an integer with values between 1 and 10, each
of which indicates, according to the spec, a progressively higher level of security. The GreatH service
authors, having read the relevant specifications, have decided that any security level between 3 and 7 will
be supported by their infrastructure. Levels less than 3 are deemed unsafe for GreatH's purposes, and
levels greater than 7 require too much in the way of resources to make it worthwhile. We can express this
in WSDL 2.0 as follows:

Example 4-5. Defining Property Constraints

<types>
<schema>
<simpleType name="securityLevelConstraint">
<restriction base="xs:int">
<min 3, max 7> <!-- check schema for syntax -->
</restriction>
</simpleType>
</schema>
</types>

<property uri="http://features.example.com/2005/securityFeature/securityLevel">

<constraint type="tns:securityLevelConstraint">
</property>

54

4.3 Defining New MEPs

First we define, in theypes section, an XML Schema restriction type over integers with minimum and
maximum values, per our discussion above. Then instead of usingliiee element insid@roperty

we useconstraint and refer to the restriction type. This informs the implementation that the property
must have the appropriate values. This information might be useful to a deployment user interface, for
example, which might allow an administrator to set this value with a slider when deploying the service.

4.3 Defining New MEPs

As we mentioned iR.4.4.3 Understanding Message Exchange Patterns (MERB)33] , even though

the 8 MEPs defined by WSDL 2.0 are intended to cover most of the common use cases, there are situa-
tions that require new MEPs to be defined. In this section, we will explain how new MEPs can be defined
to address special business requirements.

Following the wild success of its reservation service, GreatH discovered that it could radically increase
tourist interest by supplying information on weather conditions, both to travel agents and to the general
touring public. This produced a challenge for the service implementers: how could this information be
supplied to interested parties without requiring knowledge of web service technology specifically, and of
computers generally? At issue was the desire to provide asynchronous updates to unsophisticated
customers without incurring onerous overheads for technical support.

The solution adopted was to create a standard mailing list, and to make available a small cross-platform
web service client (actually, a subscriber) that could be installed on any computer with POP or IMAP
access to a mailbox. The mailbox, once signed up for the mailing list, could either be processed as "dedi-
cated" (to the GreatH weather service; travel agents did this) or as "general purpose” (in which case the
application would only examine those emails that contained Subject headers associated with the service).
This required development of a binding to email, which is out of scope for this example, but the resulting
WSDL 2.0 was otherwise quite straightforward.

Note: the email binding in use here supports publish/subscribe, by supporting the robust-out-only MEP as
well as the client/server style in-out used for subscribing and unsubscribing. Details of this binding would
require a document as long as the primer, so play along.

Example 4-6. Weather Notification Service (Initial)

<?xml version="1.0" encoding="utf-8" ?>

<description xmIns="http://www.w3.0rg/2006/01/wsdl"
targetNamespace="http://greath.example.com/2004/wsdl/weathSvc.wsdl"
xmins:tns="http://greath.example.com/2004/wsdl/weathSvc.wsdl"
xmins:wsoap="http://www.w3.0rg/2006/01/wsdl/soap"
xmins:email="http://www.example.com/webservices/email" >

<types>
</types>
<interface name="weatherlInterface">
<operation name="opSubscribeWeather"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">

<input element=". . ." />
<output element=". . ." />

55

4.3 Defining New MEPs

</operation>
<operation name="opUnsubscribeWeather"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">

<output element=". . ." />
<input element=". . ." />
</operation>

<operation name="opNotifyWeather"
pattern="http://www.w3.0rg/2006/01/wsdl/robust-out-only">
<output element=". . ." />
</operation>
</interface>

<binding name="weatherMailingListBinding"
interface="tns:weatherinterface
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://www.example.com/bindings/email">

</binding>
<service name="weatherService"
interface="tns:weatherinterface">
<endpoint name="greatHWeatherList"
binding="tns:weatherMailingListBinding"
address="mailto:weather-owner@greath.example.com" />
</service>

</description>

Note: in the example, the messagelabels of all input and output elements have been elided, as they are not
necessary to disambiguate (but note that the order of input and output elements is not significant).

Unfortunately, the service was soon highjacked for the purpose of annoyment. Repeatedly, hotels in less
salubrious climes, and the victims of various natural climactic disasters (hurricanes, tornadoes) found
themselves signed up to receive material full of incomprehensible pointy brackets. They complained to
GreatH, who complained to their service designers.

Applying public key infrastructure to solving the problem was immediately rejected as too complex and
too heavyweight. Analysis showed that the problem was simply to verify that the address requesting infor-
mation actually wanted that information. Consequently, a new message exchange pattern was defined.

4.3.1 Confirmed Challenge
This pattern consists of two or more messages in order as follows:
1. A message:
® indicated by a Message Label component whose message label is "Request” and direction is "in"

® received from some node N1

56

4.3 Defining New MEPs

2. A message:

® indicated by a Message Label component whose message label is "Challenge" and direction is
Iloutll

® sent to some node N2 (whiamaybe the same node as N1)
3. An optional message:

® indicated by a Message Label component whose message label is "Confirmation" and direction
is Ilinll

® received from node N2
4. An optional message:

® indicated by a Message Label component whose message label is "Response" and direction is
Iloutll

® sentto node N2
This pattern uses the rule Message Triggers Fault.

An operation using this message exchange pattern has a pattern property with the value
"http:/www.example.com/webservices/meps/confirmed-challenge".

Once the MEP had been defined (and the email binding specification appropriately modified to indicate
that this was a supported MEP), the service was redefined and redeployed. Only the changed operations
are shown in the excerpt below.

Example 4-7. Weather Notification Service (Revised)

<?xml version="1.0" encoding="utf-8" ?>

<description xmIns="http://www.w3.0rg/2006/01/wsdlI"
targetNamespace="http://greath.example.com/2004/wsdl/weathSvc.wsdl"
xmins:tns="http://greath.example.com/2004/wsdl/weathSvc.wsdlI"
xmins:wsoap="http://www.w3.0rg/2006/01/wsdl/soap"
xmins:email="http://www.example.com/webservices/email" >

<interface name="weatherinterface">
<operation name="opSubscribeWeather"
pattern="http://www.example.com/webservices/meps/confirmed-challenge">

<input messagelLabel="Request" element=". . ." />

<output messagelLabel="Challenge" element=". . ." />

<input messagelLabel="Confirmation" element=". . ." />

<output messagelLabel="Response" element=". . ." />
</operation>

<operation name="opUnsubscribeWeather"
pattern="http://www.example.com/webservices/meps/confirmed-challenge">
<output messagelLabel="Challenge" element=". . ." />
<output messagelLabel="Response" element=". . ." />

57

4.4 RPC Style

<input messagelLabel="Confirmation" element=". . ." />
<input messagelLabel="Request" element=". . ." />
</operation>

</interface>

</description>

Note: in the second example, the input and output examples are not in the sequence in which they occur in
the pattern; this illustrates that the sequence is not significant. Note, however, that for this pattern, the
messagelLabel attribute is required on every input and output element.

4.4 RPC Style

Section?2.4.4.1 Operation Attributeg[p.31] mentioned that the (optionalyle attribute of an interface
operation is used to indicate that the operation conforms to a particular pre-defined operation style, or set
of constraints. Actually, if desired tis¢yle attribute can hold a list of URIs, indicating that the opera-

tion simultaneously conforms to multiple styles.

Operation styles are named using URIs, in order to be unambiguous while still permitted new styles to be
defined without requiring updates to the WSDL 2.0 language. WSDL 2.0 Ra$RL 2.0 Adjundts
[p.83]] defines three such operation styles; one of these is the RP(Style (RRC Style).

TheRPC Stylds designed to facilitate programming language bindings to WSDL 2.0 constructs. It allows
a WSDL 2.0 interface operation to be easily mapped to a method or function signature, such as a method
signature in Java(TM) or C#. RPC Style is restricted to operations that use the In-Out or In-Only MEPs
(sed2.4.4.3 Understanding Message Exchange Patterns (MEHB)33]).

A WSDL 2.0 document makes use of the RPC Style in an interface operation by first defining the opera-
tion in conformance with all of the RPC Style rules, and then setting that operatida’s attribute to

include the URI that identifies the RPC Style, thus asserting that the operation does indeed conform to the
RPC Style. These rules permit the input and output message schemas to map conveniently to inputs and
outputs of a method signature. Roughly, input elements map to input parameters, output elements map to
output parameters, and elements that appear both in the input and output message schemas map to
input/output parameters. WSDL 2.0 Part 2 secfion "RPC]Style" provides full details of the mapping rules
and requirements.

The RPC Style also permits the full signature of the intended mapping to be indicated explicitly, using the
wrpc:signature attribute defined in WSDL 2.0 Part 2 sectipn "wrpc:signature Extgnsion". This is an
(optional) extension to the WSDL 2.0 language whose value designates how input and output message
schema elements map to input and output parameters in the method signature.

The example below illustrates how RPC Style may be used to designate a signature. This example is a
modified version of the GreatH reservation service. In particulamtegace andtypes sections
have been modified to specify and conform to the RPC Style.

58

http://www.w3.org/2002/ws/desc/wsdl20-adjuncts#RPCStyle
http://www.w3.org/2002/ws/desc/wsdl20-adjuncts#RPCStyle
http://www.w3.org/2002/ws/desc/wsdl20-adjuncts

4.4 RPC Style

Example 4-8. Specifying RPC Style
<types>
<xs:element name="checkAvailability">
<xs:complexType>
<xs:sequence>
<xs:element name="checklnDate" type="xs:date"/>
<xs:element name="checkOutDate" type="xs:date"/>
<xs:element name="roomType" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="checkAvailabilityResponse">
<xs:complexType>
<xs:sequence>
<xs:element name="roomType" type="xs:string"/>
<xs:element name="rateType" type="xs:string"/>
<xs:element name="rate" type="xs:double"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</types>
<interface name = "reservationinterface" >

<operation name="checkAvailability"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out"
style="http://www.w3.0rg/2006/01/wsdl/rpc"
wrpc:signature=
"checkinDate #in checkOutDate #in roomType #inout rateType #out rate #return">
<input messageLabel="In"
element="tns:checkAvailability" />
<output messagelLabel="Out"
element="tns:checkAvailabilityResponse" />

</operation>

</interface>

Note that the interface operation’s nambéeckAvailability ", is the same as the localPart of the
input element’'s QNametris:checkAvailability ". This is one of the requirements of the RPC
Style. The name of the operation is used as the name of the method in a language binding, subject to
further mapping restrictions specific to the target programming language. In this case, the name of the
method would becheckAvailability

The local children elements of the input element and output element designate the parameters and the
return type for a method call. Note that the elemehéskinDate , checkOutDate are input parame-
ters, however the elememtomType is an in-out parameter, as it appears both as a local element child of
both input and output elements. This indicates that the reservation system may change the room type
requested based on availability.

59

4.5 MTOM and Attachments Support

The reservation service also returns a rate type for the reservation, such as "rack rate". The return value for
the method is designated as the "rate" element.

Based on the value of thepc:signature attribute, the method signature would be obtained follow-
ing the order of the parameters. A sample mapping is provided below for the Java(TM) language. This

example was created using JAX RPC [JAY RPC 1]1 [p.85] for mapping simple types to Java types
and designated inout and output parameters by using Holder classes.

Example 4-9. Sample Java(TM) Signature for RPC Style
public interface reservationinterface extends Remote{

double checkAvailability(java.util.calendar checkinDate,
java.util.calendar checkOutDate,
StringHolder roomType,
StringHolder rateType) throws RemoteException;

,

Programming languages may further specify how faults are mapped to language constructs and their
scopes, such as Exceptions, but they are not specific to RPC style.

4.5 MTOM and Attachments Support

Unlike WSDL 1.1 which defines a MIME binding for attachments support, WSDL 2.0 supports MIME
attachments via the SOAP Message Transmission Optimization Mechanism (MEOKP[MTO
[p.84]]. This section shows how MTOM may be engaged in the WSDL 2.0 SOAP binding extension.

We will modify theCheckAvailability operation of the GreatH Hotel Reservation Service

[p.7]) to return not only the room rate, but images of the room and the floorplan. This will
involve modifying thecheckAvailabilityResponse data structure to include binary data repre-
senting these two images, indicated byxbidase64Binary data type. Here is an example:

Example 4-10. XML Schema with Optimizable Elements

<xs:element name="checkAvailabilityResponse">
<xs:sequence>
<xs:element name="rate" type="xs:double"/>

<xs:element name="photo"
type="xmime:base64Binary"
xmime:expectedContentType="image/jpeg image/png" />

<xs:element name="floorplan”
xmime:expectedContentType="image/svg">
<xs:simpleContent>
<xs:restriction base="xs:base64Binary">
<xs:attribute ref="xmime:contentType"
fixed="image/svg" />

60

4.5 MTOM and Attachments Support

</xs:restriction>
</xs:simpleContent>
</xs:.element>

</xs:sequence>

</xs:element>

Note the use of themime:expectedContentType andxmime:contentType attributes to

declare the expected media type of the encoded data and to allow the client to indicate the type at runtime,
respectively. These attributes are define{Dedcribing Media Content of Binary Data in XML [p.§3]

Also note that, when using the WSDL HTTP Binding, an implementation MAY use incoming HTTP

Accept headers to choose between alternative media types listed in xmime:expectedContentType.

A checkAvailabilityResponse message conforming to this schema might look like this:

Example 4-11. Non-optimized SOAP Message with Embedded Binary Data

<soap:Envelope
xmins:soap="http://www.w3.0rg/2003/05/soap-envelope’
xmins:xmime="http://www.w3.0rg/2005/05/xmIimime’>

<soap:Body>
<g:checkAvailabilityResponse
xmins:g="http://greath.example.com/2004/schemas/resSvc">

<g:rate>129.95</g:rate>
<g:photo xmime:contentType="image/png’'>/aWKKapGGyQ=</g:photo>
<g:floorplan xmime:contentType="image/svg">Faa7vROi2VQ=</g:floorplan>

</g:checkAvailabilityResponse>
</soap:Body>

</soap:Envelope>

While this (non-optimized) message satisfies the schema definition, a service may choose to allow or
require that the binary data be sent in an optimized format using the Message Transmission and Optimiza-
tion Mechanism (MTOM). The use of this feature by the WSDL 2.0 SOAP binding extension is indicated
as follows:

Example 4-12. Specifying MTOM in a WSDL 2.0 Binding

<binding name="reservationSOAPBinding"
interface="tns:reservationinterface"
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP">

<operation ref="tns:opCheckAvailability"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/request-response">

<input name="checkAvailability" />

61

5. Advanced Topics Ill: Miscellaneous

<output name="checkAvailabilityResponse">
<feature
uri="http://www.w3.0rg/2004/08/soap/features/http-optimization”
required="true" />
</output>

</operation>

</t;iﬁding>

The HTTP Message Transmission Optimization (MTOM) feature is engaged usiegtime element.

Note that the attributeequired="true" on the feature declaration indicates that the message must be
encoded using the HTTP Optimization feature. If the attribute veepgred="false" (or this

attribute were absent), it would indicate that the use of MTOM is optional for this service: the service
accepts either MTOM-encoded messages, or the embedded base64Binary data directly in the SOAP Body,
and the client is free to send either form of message.

The example above shows MTOM enabled for a specific message within an operation. Placing the feature
declaration as a child aperation would require (or enable iEquired="false") MTOM

support for all the messages in that operation. Placing the feature declaration as ebafnilich@f

would require (or enable required="false") MTOM support for all the operations in that inter-

face.

5. Advanced Topics lll: Miscellaneous

This section covers various topics that may fall outside the scope of WSDL 2.0, but shall provide useful
background and best practice guidances that may be useful when authoring a WSDL 2.0 document or
implementing the WSDL 2.0 specification.

5.1 Enabling Easy Message Dispatch

It is desirable for a message recipient to have the capability to uniquely identify a message in order to
handle it correctly. The capability of identifying a message is typically used for dispatching purposes
within an implementation of a web service. Therefore, WSDL authors are recommended to take disam-
biguating of messages that are defined in a description into consideration when they develop descriptions
of their services.

The context in which a Web service may be deployed plays an important role in choosing an appropriate
way to disambiguate and identify messages. In a typical deployment, an endpoint address may host a
single service that is described by a WSDL service element. In this case, when XSD is used, assigning
unique qualified names of global element declarations as inputs within the interface that describes the
service would be sufficient to disambiguate the messages that are received. However, when endpoint
address hosts multiple services, in essence supports several WSDL descriptions, the desire to disambiguate
messages should considered within the context of all the deployed services, not only within a single inter-
face.

62

5.2 Web Service Versioning

As explained if2.4.4.1 Operation Attributeg[p.31] , when XSD is used as the type system, a few special
tokens can be used for takement attributes. Uniquely identifying a message may become very diffi-
cult when:

e any of these input elements within an interface has a value of “#any”; or
® more than one of these input elements (see below) has a value of “#none”; or

e the qualified names of the global element declarations that are specified as input elements are NOT
unique when considered together.

If any of the three cases above arise, then one of the following two alternatives can be used within the
context of a single WSDL service by WSDL authors:

® Feature.The service or the interface element contains a Feature element declaration, having a
required attribute with a value of true. The feature unambiguously identifies the mechanism that a
message sender is required to support in order to enable the message recipient to unambiguously
determine the message received.

® ExtensionThe interface element contains an extension element (i.e., an element that is not in the
http://iwww.w3.0rg/2006/01/wsdl namespace), having a wsdl:required attribute with a value of "true".
The extension element unambiguously identifies the mechanism that a message sender is required to
support in order to enable the message recipient to unambiguously determine the message received.

In addition, WS-Addressing [WS-Addressing] specification already provides a disambiguation mecha-
nism. It defines a required [action] property whose value is always present in a message delivery. The
value of the action property can be used to disambiguate the message by the receiver and there is a well
defined way to associate actions to messages in WS-Addressing specifications. Further, WS-Addressing
also provides an appropriate default action value that identifies each message uniquely.

5.2 Web Service Versioning

A WSDL 2.0 document describes a set of messages that a Web service may send and receive. In essence,
it describes a language for interacting with that service. However it is possible for a Web service to
exchange other messages beyond those described in a particular WSDL 2.0 document. Often this circum-
stance occurs following an evolution of the client and/or service, and thus an evolution of the interaction
language.

How best to manage the evolution (versioning) of Web based systems is, at the time of writing, the subject
of a wide ranging debate. However, there are three activities within the W3C that are directly relevant to
versioning of Web services description:

® The|Technical Architecture Group (TAG) has published guidance on the extensibility and versioning
of data formats in its Web Architecture docum@hiep Architecture [p.83]. There is also a more
wide ranging draft finding on Versioning and ExtensibildyJC TAG Finding: Versionifg [p.83]
Both of these works build upon the technical note on Web Architecture: Extensible Languages
[[WebArch: Extensible Languages [p.85]

63

http://www.w3.org/2001/tag/

5.2 Web Service Versioning

e The| XML Schema Working Grolip is collecting a series of use cases for schema versioning as a part
of the Schema 1.1 activity. See XML Schema Versioning Use (Pdbtis $chema: Versionirg
[Use-Casds [p.85]

® The|Semantic Web Best Practices and Deployments Working |Group is examining how vocabularies
may evolve. Se¢ggW VocabManagementNote [p.§5]

Editorial note: PaulD 20050706

This section may be subject to change dependent upon the outcome of the WSDL Last Call Issye
LC124, which discusses support compatible evolution of messages described using XML Schenlla 1.0.

While incomplete, these activities all agree in one important respect: that versioning is difficult, but you
should anticipate and plan for change.

The draft finding on Versioning and Extensibility details two key approaches to versioning:
e compatible evolution; and
® big bang.

5.2.1 Compatible Evolution

In compatible evolutiondesigners are expected to limit changes to those that are either backward or
forward compatible, or both:

Backward compatible

The receiver behaves correctly if it receives a messagedldarnversion of the interaction language.
Forward compatible

The receiver behaves correctly if it receives a messageewerversion of the interaction language.

Since Web services and their clients both send and receive messages, these concepts can apply to both
parties. However, since WSDL 2.0 is service-centric, we will focus on the case of service evolution.

There are three critical areas in which a service described in WSDL 2.0 my evolve:

® The service now also supports additional binding. In compatible evolution, this should be a safe addi-
tion, given that adding a new binding should not impact any existing interactions using another trans-
port.

® An interface supports new operations. Again, in compatible evolution this is usually safe, given that
adding an additional operation to an abstract interface should not impact any existing interactions.

64

http://www.w3.org/XML/Schema
http://www.w3.org/2001/sw/BestPractices/

5.2 Web Service Versioning

® The message bodies may include additional data. How the message contents may change within a
description depends to a large extent upon the type system being used to describe the message
contents. RelaxNGRELAX NG [p.85] has good support for describing vocabularies that ignore
unknown XML, as does OWL/RDF. XML Schema 1.0 has limited support for extending the descrip-
tion of a message via tixg:any andxs:anyAttribute constructs. XML Schema 1.1 has been
chartered to provide "changes necessary to provide better support for versioning of schemas", and it
is anticipated that this may include improved support for more "open content” and therefore better
support for compatible evolution of messages.

® The protocol used to exchange messages may provide mechanisms for exchanging data outside of the
message body. In the case of SOAP, the WSDL 2.0 binding provides the ability to describe applica-
tion data to be exchanged as headers. The SOAP processing model has a very good extensibility
model with unknown headers being ignored by a receiver by default. There is also a mechanism
whereby headers which are required as a part of an incompatible change may be marked with a
'mustUnderstand’ flag. Passing additional items as headers may be the only way to compatibly
evolve messages with fixed bodies.

5.2.2 Big Bang

Thebig bangapproach to versioning is the simplest to currently represent in WSDL 2.0. In this approach,
any change to a WSDL 2.0 document implies a change to the document’s namespace, a change to the
interface implies a new interface namespace and a change to the message contents is communicated using
a new message namespace. This approach has particular benefits where an agent may quickly tell if a
service has changed by simply comparing the namespace value.

5.2.3 Evolving a Service
Compatible changes are far more easily managed than incompatible ones:

e \With a compatible change the service need only support the latest version of a service. A client may
continue to use a service adjusting to new version of the interface description at a time of its choos-

ing.

e \With an incompatible change, the client receives a new version of the interface description and is
expected to adjust to the new interface before old interface is terminated. Either the service will need
to continue to support both versions of the interface during the hand over period, or the service and
the clients are coordinated to change at the same time. An alternative is for the client to continue until
it encounters an error, at which point it uses the new version of the interface.

5.2.4 Combined Approaches

It is feasible to combine the "compatible evolution" and "big bang" approaches in a variety of different
ways. For example, the namespace could be changed when message descriptions are changed, but the
namespace could stay the same when new operations are added.

65

5.2 Web Service Versioning

While the big bang approach is currently the easiest to implement in WSDL 2.0, it can lead to a large
number of cloned interfaces that become difficult to manage, thus making the compatible approach prefer-
able to many for widely distributed systems. In the end, the choice of a versioning strategy for Web
services described in WSDL 2.0 is left as an exercise to the reader.

5.2.5 Examples of Versioning and Extending a Service
5.2.5.1 Additional Optional Elements Added in Content

The following example demonstrates how content may be extended with additional content. The reserva-
tion service is changed to a newer version that can accept an optional number of guests parameter. The
service provider wants existing clients to continue to be able to use the service. The author adds the
element into the schema as an optional element.

Example 5-1. XML Schema with Optional Elements

<xs:complexType name="tCheckAvailability">
<xs:sequence>
<xs:element name="checkinDate" type="xs:date"/>
<xs:element name="checkOutDate" type="xs:date"/>
<xs:element name="roomType" type="xs:string"/>
<xs:element name="numberOfGuests" type="xs:integer" minOccurs="0"/>
<xs:any namespace="#other" processContents="lax"/>
</xs:sequence>
</xs:complexType>

The author has the choice of keeping the same namespace or using a different namespace for the addi-
tional content and the existing content. In this scenario, it is a compatible change and the author decides to
keep the same namespace. This allows existing clients to interact with a new service, and it allows newer
clients to interact with older services.

5.2.5.2 Additional Optional Elements Added to a Header

Another option is to add the extension as a header block. This is accomplished by defining an element for
the extension and adding a header element that references the element into the binding operation as child
of the input.

Example 5-2. Additional optional elements added to a SOAP header

<xs:element name="NumberOfGuests" type="tNumberOfGuests"/>
<xs:complexType name="tNumberOfGuests">

<xs:sequence>

</xs:sequence>
</xs:complexType>

<binding name="reservationSOAPBinding"
interface="tns:reservationinterface"
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP">

<operation ref="tns:opCheckAvailability">

66

5.2 Web Service Versioning

<input>
<wsoap:header element="tns:NumberOfGuests"/>
</input>
</operation>

;}binding>

It is also possible for the header to be marked with soap:mustUnderstand set to true. The HTTP Binding
has similar functionality though without a mustUnderstand attribute.

5.2.5.3 Additional Mandatory Elements in Content

This following example demonstrates an extension with additional content. The reservation service
requires a number of guests parameter. The service provider wants existing clients to be unable to use the
service. The author adds the element into the schema as a mandatory element.

Example 5-3. Additional Mandatory Elements in Content

<xs:complexType name="tCheckAvailability\V2">
<xs:seguence>
<xs:element name="checkinDate" type="xs:date"/>
<xs:element name="checkOutDate" type="xs:date"/>
<xs:element name="roomType" type="xs:string"/>
<xs:element name="numberOfGuests" type="xs:integer"/>
<xs:any namespace="##other" processContents="lax"/>
</xs:sequence>

</xs:complexType>

The author has the choice of keeping the same namespace or using a different namespace for the addi-
tional content and the existing content. In this scenario, it is an incompatible change and the author decides
to use a new name but the same namespace. This type is then used in the interface operation, and then
binding and service endpoints.

5.2.5.4 Additional Optional Operation Added to Interface

Sectior2.4.2 Interface Inheritance[p.29] shows another type of versioning or extension, where the
reservationinterface extends the MessageLoglnterface. By definition of interface inheritance, a client that
understands just the MessageLoglnterface will continue to work with the reservationinterface, that it is
backwards compatible.

5.2.5.5 Additional Mandatory Operation Added to Interface

Often mandatory operations are added to an interface. The Hotel service decides to add an operation to the
reservation service which is a confirmation. The Hotel service requires that all clients upgrade to the new
interface to use the service. They have a variety of options for indicating that the old interface is depre-
cated.

By the definition of interface inheritance, they cannot use interface inheritance for defining the extension.

67

5.2 Web Service Versioning

Example 5-4. Additional Mandatory Operation Added to the Interface
<interface name="reservationWithConfirmation" extends="cc:creditCardFaults">

<operation name="makeReservation">
<input messageLabel="In" element="ghns:makeReservation" />
<output messageLabel="0ut" element="ghns:makeReservationResponse" />
<outfault ref="invalidDataFault" messageLabel="0Out" />
<outfault ref="cc:cancelledCreditCard" messagelLabel="Out" />
<outfault ref="cc:expiredCreditCard" messagelLabel="Out" />
<outfault ref="cc:invalidCreditCardNumber" messageLabel="0Out" />
<outfault ref="cc:invalidExpirationDate" messageLabel="Out" />

</operation>

<operation name="confirmReservation">
<input messageLabel="In" element="ghns:makeReservationResponse" />
<output messageLabel="0ut" element="ghns:confirmReservationResponse" />
<outfault ref="expiredReservation" messagelLabel="Out" />

</operation>

</interface>

This interface cannot be bound and deployed at the existing URI and indicate incompatibility, as the
service will still accept the makeReservation request. Changing the name of the interface from reservation
to reservationWithConfirmation or changing the name of the operation from makeReservation to
makeReservationV2 does not affect the messages that are exchanged. Thus it can’t be used as a mecha-
nism for indicating incompatibility. To indicate incompatibility, a change must be made to something that
appears in the message. For a SOAP over HTTP request, the list is roughly the URI, the SOAP Action
HTTP Header, or the Message content.

5.2.5.6 Indicating Incompatibility by Changing the Endpoint URI

To indicate incompatibility, the URI of the Hotel Endpoint can be changed and messages send to the old
Endpoint return a Fault.

5.2.5.7 Indicating Incompatibility by Changing the SOAP Action

The SOAP Action can be set for the makeReservation request, and making it different than the earlier
version should indicate incompatibility.

Example 5-5. Indicating Incompatibility by changing the SOAP Action

<binding name="reservationSOAPBinding"
interface="tns:reservationinterface”
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP">
<operation ref="tns:makeReservation"
wsoap:action="tns:makeReservationV2"/>

Note that this mechanism is applicable on a per-binding basis. The SOAP HTTP Binding provides for
setting Action, but other bindings may not provide such a facility.

68

5.3 Describing Web Service Messages That Refer to Other Web Services

5.2.5.8 Indicating Incompatibility by Changing the Element Content

The namespace or name of the makeReservation element can be changed, and then the interface and bind-
ings changed. To indicate incompatibility, requests using the old makeReservation QName should proba-
bly return a fault. The new interface, with a changed makeReservation, is:

Example 5-6. Indicating incompatibility by changing the element content
<xs:element name="ghns2:makeReservation" type="ghns:tmakeReservation"/>
<interface . . .>

<operation name="makeReservation">

<[interface>
The binding and service endpoints require no change.

Finally, the service could also provide an interface for ghns:makeReservation that only returns a fault.

5.3 Describing Web Service Messages That Refer to Other Web Services

Hyperlinking is one of the defining characteristics of the Web. The ability to navigate from one Web page
to another is extremely useful. It is therefore natural to apply this capability to Web services. This section
describes references to endpoints and services, which are the Web service analogs of document hyper-
links.

A reference to an endpoirg an element or attribute that contains the address of a Web service endpoint.

A reference to a servids an element or attribute that contains one or more references to the endpoints of
a service. If the interface or binding that the service or endpoint implements is known at description time,
it may be useful to add this information to the WSDL 2.0 document that describes the Web service. This is
accomplished by using tivesdlx:interface orwsdlx:binding attribute to annotate the XML

Schema component that defines the message.

One may wonder, from a Web architectural point of view, why anything more than a URI would be

needed to reference a Web service. Indeed, a reference to a service does make use of one or more URIs to
indicate the endpoint addresses of a service. However, it may also include additional metadata about that
service, such as the WSDL 2.0 interface and binding that the service supports.

References to services and endpoints will be illustrated by expanding the GreatH example already
discussed.

5.3.1 The Reservation Details Web Service
When designing a Web application it is natural to give each important concept a URI. In the GreatH hotel

reservation system, the important concepts are reservations, so we begin our design by assigning a URI to
each reservation. Since each reservation has a unique confirmation number, e.g OMX736, we create a URI

69

5.3 Describing Web Service Messages That Refer to Other Web Services

for each reservation by appending the confirmation number to a base URI, e.g.
http://greath.example.com/2004/reservation/OMX736. This URI will be the endpoint address for a Reser-

vation Details Web service that can retrieve and update the state of a resdrvation. Exdmple 5-7 [p.70]
shows the format of the reservation detail.

Example 5-7. Detail for Reservation OMX736

<?xml version="1.0" encoding="UTF-8"?>
<reservationDetails
xmlns="http://greath.example.com/2004/schemas/reservationDetails">

<confirmationNumber>0OMX736</confirmationNumber>
<checklnDate>2005-06-01</checkinDate>
<checkOutDate>2005-06-03</checkOutDate>
<roomType>single</roomType>
<smoking>false</smoking>

</reservationDetails>

The Reservation Details Web service provides operations for retrieving and updating the detail for a reser-
vation[Example 5{8 [p.70] shows the description for this Web service. Note that theseisioe

element in this description since the set of reservations is dynamic. Instead, the endpoints for the reserva-
tions will be returned by querying the Reservation List Web service.

Example 5-8. The Reservation Details Web Service Description: reservationDetails.wsdl

<?xml version="1.0" encoding="utf-8" ?>

<description
xmins="http://www.w3.0rg/2006/01/wsdI"
targetNamespace="http://greath.example.com/2004/services/reservationDetails"
xmins:tns="http://greath.example.com/2004/services/reservationDetails"
xmins:wdetails="http://greath.example.com/2004/schemas/reservationDetails"
xmins:wsoap="http://www.w3.0rg/2006/01/wsdl/soap"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<documentation>
This document describes the GreatH Reservation Details Web
services. Use these services to retrieve or update reservation
details. Each reservation has its own service and endpoint. To
obtain the reference for a reservation service, make a request to
the GreatH Reservation List Web service. See
reservationList.wsdl for a description of the Reservation List
Web service.

</documentation>

<types>
<xs:import
namespace="http://greath.example.com/2004/schemas/reservationDetails"
schemalocation="reservationDetails.xsd" />
</types>

<interface name="reservationDetailsInterface">
<operation name="retrieve"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">

<input messagelLabel="In" element="#none" />
<output messagelLabel="Out"

70

5.3 Describing Web Service Messages That Refer to Other Web Services

element="wdetails:reservationDetails" />
</operation>

<operation name="update"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">
<input messagelLabel="In"
element="wdetails:reservationDetails" />
<output messagelLabel="Out"
element="wdetails:reservationDetails" />
</operation>

</interface>

<binding name="reservationDetailsSOAPBinding"
interface="tns:reservationDetailsInterface"
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP">

<operation ref="tns:retrieve"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/request-response" />

<operation ref="tns:update"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/request-response" />

</binding>

</description>

Example 5-P [p.71] shows the XML schema elements that are used in this Web service.

Example 5-9. The Reservation Details Web Service XML Schema: reservationDetails.xsd

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlIns="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://greath.example.com/2004/schemas/reservationDetails"
xmins:tns="http://greath.example.com/2004/schemas/reservationDetails"
xmins:wdetails="http://greath.example.com/2004/services/reservationDetails"
xmins:wsdli="http://www.w3.0rg/2006/01/wsdl-instance"
xmins:wsdIx="http://www.w3.0rg/2006/01/wsdl-extensions"
wsdli:wsdILocation="http://greath.example.com/2004/services/reservationDetails reservationDetails.wsdl">

<element name="confirmationNumber" type="string" />
<element name="checkInDate" type="date" />
<element name="checkOutDate" type="date" />

<element name="reservationDetails">
<complexType>
<sequence>
<element ref="tns:confirmationNumber" />
<element ref="tns:checkinDate" />
<element ref="tns:checkOutDate" />
<element name="roomType" type="string" />
<element name="smoking" type="boolean" />
</sequence>
</complexType>
</element>

<simpleType name="reservationDetailsSOAPEndpointType" wsdlx:binding="wdetails:reservationDetailsSOAPBinding">
<restriction base="anyURI"/>
</simpleType>

<element name="reservationDetailsSOAPEndpoint" type="tns:reservationDetailsSOAPEndpointType" />

<element name="reservationDetailsService">

71

5.3 Describing Web Service Messages That Refer to Other Web Services

<annotation>
<documentation>
This element contains references to the Reservation
Details Web Service endpoints for this reservation.
</documentation>
</annotation>
<complexType>
<sequence>
<element name="soap" type="tns:reservationDetailsSOAPEndpointType"/>
<element name="secure-soap" type="tns:reservationDetailsSOAPEndpointType"/>
</sequence>
</complexType>
</element>

</schema>

This XML schema contains the usual definitions for the elements that appear in the messages of the Web
service. For example, tmeservationDetails element is used in the messages ofdiigeve

andupdate operations. In addition, the schema defines the simplerégeevationDe-
tailsSOAPENdpointType which is based ors:anyURI and has the annotation

wsdIx:binding = "wdetails:reservationDetailsSOAPBInding" which means that the
URI is the address of a Reservation Details Web service endpoint that implements the
wdetails:reservationDetailsSOAPBInding binding. Note that thessdli:wsdILoca-

tion attribute is used to define the location of the WSDL 2.0 document that defines the
wdetails:reservationDetailsSOAPBInding binding. This annotated simple type is used to
define thereservationDetailsSOAPEnNdpoint element which will be used in the Reservation List
service.

5.3.2 The Reservation List Web Service

Since the set of reservations changes as reservations are made and cancelled, the Reservation Detail
endpoints are not described in a fixed WSDL 2.0 document. Instead they are returned as references to
endpoints in response to requests made on a Reservation List Web service. The endpoint address for the
Reservation List service will be http://greath.example.com/2004/reservationList.

Example 5-1D [p.72] shows the format of the response from the Reservation List service.

Example 5-10. Response from the Reservation List Web Service

<?xml version="1.0" encoding="UTF-8"?>

<reservationList
xmlns="http://greath.example.com/2004/schemas/reservationList"
xmins:details="http://greath.example.com/2004/schemas/reservationDetails">

<reservation>
<details:confirmationNumber>HSG635</details:confirmationNumber>
<details:checkinDate>2005-06-27</details:checkinDate>
<details:checkOutDate>2005-06-28</details:checkOutDate>
<details:reservationDetailsSOAPEndpoint>

http://greath.example.com/2004/reservation/HSG635

</details:reservationDetailsSOAPEndpoint>

</reservation>

<reservation>

<details:confirmationNumber>0OMX736</details:confirmationNumber>
<details:checkinDate>2005-06-01</details:checkinDate>

72

5.3 Describing Web Service Messages That Refer to Other Web Services

<details:checkOutDate>2005-06-03</details:checkOutDate>
<details:reservationDetailsSOAPEndpoint>
http://greath.example.com/2004/reservation/OMX736
</details:reservationDetailsSOAPEndpoint>
</reservation>

<reservation>
<details:confirmationNumber>WUHG663</details:confirmationNumber>
<details:checkinDate>2005-06-11</details:checkinDate>
<details:checkOutDate>2005-06-15</details:checkOutDate>
<details:reservationDetailsSOAPEndpoint>

http://greath.example.com/2004/reservation/WUH663

</details:reservationDetailsSOAPEndpoint>

</reservation>

</reservationList>

Here, the<details:reservationDetailsSOAPENndpoint> elements contain references to the
Reservation Details Web service endpoints for the reservations HSG635, OMX736, and WUH663.

Example 5-1f1 [p.73] shows the description of the Reservation List Web service. Note that it contains oper-
ations to retrieve the entire list and to query for a list of reservations by confirmation number, check-in
date, and check-out date. In each case, the operation returns a list of reservations.

Example 5-11. The Reservation List Web Service Description: reservationList.wsdl

<?xml version="1.0" encoding="utf-8" ?>

<description
xmins="http://www.w3.0rg/2006/01/wsdl"
targetNamespace="http://greath.example.com/2004/services/reservationList"
xmins:tns="http://greath.example.com/2004/services/reservationList"
xmins:details="http://greath.example.com/2004/schemas/reservationDetails"
xmins:list="http://greath.example.com/2004/schemas/reservationList"
xmins:wsoap="http://www.w3.0rg/2006/01/wsdl/soap"
xmins:xs="http://www.w3.0rg/2001/XMLSchema">

<documentation>
This document describes the GreatH Reservation List Web
services. Use this service to retrieve lists of reservations
based on a variety of search criteria.

</documentation>

<types>
<xs:import
namespace="http://greath.example.com/2004/schemas/reservationDetails"
schemalocation="reservationDetails.xsd" />
<xs:import
namespace="http://greath.example.com/2004/schemas/reservationList"
schemalocation="reservationList.xsd" />
</types>

<interface name="reservationListinterface">

<operation name="retrieve"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">
<input messagelLabel="In" element="#none" />
<output messagelLabel="Out" element="list:reservationList" />
</operation>

73

5.3 Describing Web Service Messages That Refer to Other Web Services

<operation name="retrieveByConfirmationNumber"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">
<input messagelLabel="In"
element="details:confirmationNumber" />
<output messagelLabel="Out" element="list:reservationList" />
</operation>

<operation name="retrieveByCheckInDate"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">
<input messagelLabel="In" element="details:checkinDate" />
<output messagelLabel="Out" element="list:reservationList" />
</operation>

<operation name="retrieveByCheckOutDate"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">
<input messagelLabel="In" element="details:checkOutDate" />
<output messagelLabel="0ut" element="list:reservationList" />
</operation>

</interface>

<binding name="reservationListSOAPBinding"
interface="tns:reservationListInterface"
type="http://www.w3.0rg/2006/01/wsdl/soap"
wsoap:protocol="http://www.w3.0rg/2003/05/soap/bindings/HTTP">

<operation ref="tns:retrieve"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/request-response" />

<operation ref="tns:retrieveByConfirmationNumber"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/request-response" />

<operation ref="tns:retrieveByCheckIinDate"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/request-response" />

<operation ref="tns:retrieveByCheckOutDate"
wsoap:mep="http://www.w3.0rg/2003/05/soap/mep/request-response" />

</binding>

<service name="reservationListService"
interface="tns:reservationListInterface">

<endpoint nhame="reservationListEndpoint"
binding="tns:reservationListSOAPBinding"
address="http://greath.example.com/2004/reservationList" />

</service>

</description>

Example 5-1P [p.74] shows the schema for the messages used in the Reservation List Web service.

Example 5-12. The Reservation List Schema: reservationList.xsd

<?xml version="1.0" encoding="UTF-8"?>

<schema xmins="http://mww.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="http://greath.example.com/2004/schemas/reservationList"

74

5.3 Describing Web Service Messages That Refer to Other Web Services

xmlns:tns="http://greath.example.com/2004/schemas/reservationList"
xmins:details="http://greath.example.com/2004/schemas/reservationDetails"
xmins:wsdli="http://www.w3.0rg/2006/01/wsdl-instance">

<import
namespace="http://www.w3.0rg/2006/01/wsdl-instance" />

<import
namespace="http://greath.example.com/2004/schemas/reservationDetails"
schemalocation="reservationDetails.xsd" />

<element name="reservation">
<annotation>
<documentation>
A reservation contains the confirmation number, check-in
and check-out dates, and a reference to a Reservation
Details Web service.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="details:confirmationNumber" />
<element ref="details:checkinDate" />
<element ref="details:checkOutDate" />
<element ref="details:reservationDetailsSOAPEndpoint" />
</sequence>
</complexType>
</element>

<element name="reservationList">
<annotation>
<documentation>
A reservation list contains a sequence of zero or more
reservations.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="tns:reservation" minOccurs="0"
maxQOccurs="unbounded">
</element>
</sequence>
<attribute ref="wsdli:wsdlLocation" />
</complexType>
</element>

</schema>

In the preceding example, there was a single endpoint associated with each Reservation Detail Web
service. Suppose GreatH hotel decided to provide a second, secure endpoint. In this case, references to
services would be used to collect together the endpoints for each reservation. The reservationDetails.xsd
schema defines threservationDetailsService element for this purpose. It contains the nested
elementsoap andsecure-soap which are each of typeservationDetailsSOAPENd-

pointType and therefore contain the address of an endpoint that implemeniddtesls:reser-
vationDetailsSOAPBInding binding.

75

5.3 Describing Web Service Messages That Refer to Other Web Services

Example 5-1B [p.76] shows an example of a message that contains a reference to the service for reserva-
tion HGS635. Note that the service contains two endpoints, one of which provides secure access to the
Reservation Details Web service.

Example 5-13. A Reference to the Reservation Details Web Service

<?xml version="1.0" encoding="UTF-8"?>
<details:reservationDetailsService
xmins:details="http://greath.example.com/2004/schemas/reservationDetails"

<details:soap>
http://greath.example.com/2004/reservation/HSG635

</details:soap>

<details:secure-soap>
https://greath.example.com/2004/reservation/HSG635

</details:secure-soap>

</details:reservationDetailsService>

5.3.3 Reservation Details Web Service Using HTTP Transfer

This section presents a variation on the exame3ri The Reservation Details Web Servide.69] . It
illustrates the use of HTTP transfer operations, GET and PUT, to retrieve and update GreatH hotel reser-
vation details using the Representational State Transfer (REST) architectural style described by Roy Field-
ing [p.85] . REST is a distillation of the architectural properties that Dr. Fielding identified as

being vital to the Web'’s robustness and enormous scalability.

Since each reservation in our example will have a distinct URI, the Reservation Details Web service can
be offered using HTTP GET and HTTP PUT. The binding would be modified as follows:

Example 5-14. Reservation Details Web Service Using HTTP Transfer

<binding name="reservationDetailsHTTPBinding"
type="http://www.w3.0rg/2006/01/wsdl/http"
interface="tns:reservationDetailsInterface" >

<operation ref="tns:retrieve"
whttp:method="GET" />

<operation ref="tns:update"
whttp:method="PUT" />

</binding>

As with the example iB.3.1 The Reservation Details Web Servide.69] , service and endpoint
elements are not provided because the Reservation List Web service provides the endpoints.

76

5.3 Describing Web Service Messages That Refer to Other Web Services

5.3.4 Reservation List Web Service Using HTTP GET

This section continues the REST-style examp[g.8f3 Reservation Details Web Service Using HT TP

[p.76] by modifying the example Bf3.2 The Reservation List Web Servi¢fp.72] to use
HTTP GET.

The SOAP version of the Reservation List Web service above offers four different search operations.
These can also be expressed as various parameters in a URI used by HTTP GET:

Example 5-15. Reservation List Web Service Using HTTP GET

<hinding name="reservationListHTTPBinding"
type="http://www.w3.0rg/2006/01/wsdl/http"
interface="tns:reservationListInterface"
whttp:methodDefault="GET">

<operation ref="tns:retrieve"
whttp:location="" />

<operation ref="tns:retrieveByConfirmationNumber"
whttp:location="reservationList/ConfirmationNumber/{confirmationNumber/}" />

<operation ref="tns:retrieveByCheckinDate"
whttp:location="reservationList/CheckinDate/{checkinDate/}" />

<operation ref="tns:retrieveByCheckOutDate"
whttp:location="reservationList/CheckOutDate/{checkOutDate/}" />
</binding>

<service...>

<endpoint name="reservationListEndpoint"
binding="tns:reservationListHTTPBinding"
address="http://greath.example.com/2004/reservationList" />

</service>

A retrieval by Confirmation Number URI would look like:
http://greath.example.com/2004/reservationList/ConfirmationNum-
ber/HSG635 .

Alternatively, a single query type may be provided. This query type is a sequence of optional items. Any
items in the sequence are serialized into the URI query string. A query sequence for any of Confirmation-
Number, checkinDate, checkOutDate would look like this:

Example 5-16. Query Sequence Using a Single Query Type

<element name="reservationQuery">
<annotation>
<documentation>
A reservation contains the confirmation number, check-in
and check-out dates, and a reference to a Reservation

7

5.3 Describing Web Service Messages That Refer to Other Web Services

Details Web service.
</documentation>
</annotation>
<complexType>
<sequence>
<element ref="details:confirmationNumber" minOccurs="0"/>
<element ref="details:checklnDate" minOccurs="0"/>/>
<element ref="details:checkOutDate" minOccurs="0"/>/>
</sequence>
</sequence>
</complexType>
</element>

The WSDL 2.0 service that offers this type serialized as a parameter would look like this:

Example 5-17. WSDL 2.0 for Using a Single Query Type

<interface name="reservationListinterfaceWithQuery">

<operation name="retrieveByReservationQuery"
pattern="http://www.w3.0rg/2006/01/wsdl/in-out">
<input messagelLabel="In"
element="details:ReservationQuery" />
<output messagelLabel="Out"
element="list:reservationList" />
</operation>

</interface>

<binding name="reservationListQueryHTTPBinding"
type="http://www.w3.0rg/2006/01/wsdl/http"
interface="tns:reservationListinterfaceWithQuery"
whttp:methodDefault="GET">

<operation ref="tns:retrieveByReservationQuery"
whttp:location="reservationList/{ReservationQuery}}" />

</binding>

<endpoint name="reservationListEndpoint"
binding="tns:reservationListHTTPBinding"
address="http://greath.example.com/2004/reservationList" />

Various URIs would benttp://greath.example.com/2004/reservationList/Reser-
vationQuery?confirmationNumber=HSG635
http://greath.example.com/2004/reservationList/Reservation-
Query?checkinDate=06-06-05

It is important to observe that using the URI serialization can result in very flexible queries and few opera-
tions. The previous discrete SOAP operations are collapsed into one "parameterized" operation.

78

5.4 Multiple Interfaces for the Same Service

5.4 Multiple Interfaces for the Same Service

Suppose a Web service wishes to expose two different interfaces: a customer interface for its regular users,
and a management interface for its operatonséll:service specifies only one wsdl:interface, so to

achieve the desired effect the service provider would somehow need to indicate a relationship between two
services. How can a service provider indicate a relationship between services? Potential strategies include:

® Declare both interfaces in the same wsdl:description elemerilthough WSDL 2.0 does not
ascribe any particular significance to the fact that two wsdl:services are declared within the same
wsdl:description, an application or toolkit could interpret this to mean that they are related in some
way.

® Declare both interfaces in the same wsdl:targetNamespaco&gain, although WSDL 2.0 does not
ascribe any particular significance to the fact that two wsdl:services are declared within the same
wsdl:targetNamespace, an application or toolkit could interpret this to mean that they are related in
some way.

e Add an extension to WSDL 2.Ghat links together all services that are related in this way. WSDL
2.0’s open content model permits extension elements from other namespaces to appear in a WSDL
2.0 document.

® Declare them in completely separate WSDL 2.0 documents, but use the same endpoint address
for both. l.e., declare avsdl:interface andwsdl:service for the customer interface in one
WSDL 2.0 document, andvesdl:interface andwsdl:service for the management inter-
face in a different WSDL 2.0 document, but use the same endpoint address for both. (By "different
WSDL 2.0 document" we mean that both documents are never included or imported into the same
WSDL 2.0 descriptions component.) Although this approach may work in some circumstances, it
means that the same endpoint address would be used for two different purposes, which is apt to cause
confusion or ambiguity. Furthermore, it is contrary to the Web architectural principle that different
URIs should be used to identify different Web resources. (See the Web Archif@éalré\fchited-
[p-83]] section orf URT collisidn.)

® Use inheritance to combine the customer interface and management interfaiceo a single,
larger wsdl:interface. Of course, this reduces modularity and means that the management interface
becomes exposed to the customers, which is not good.

Bear in mind that since the above strategies step outside of the WSDL 2.0 language specifies (and are
therefore neither endorsed nor forbidden by the WSDL 2.0 specification) the WSDL 2.0 specification
cannot define or standardize their semantics.

The desire to express relationships between services is also relevant to Web service versioning, discussed
next.

79

http://www.w3.org/TR/webarch/#URI-collision

5.5 Mapping to RDF and Semantic Web

5.5 Mapping to RDF and Semantic Web

Editorial note: KevinL 20050429

This section might be removed - pending on the availability of the RDF mapping

note.

WSDL 2.0 is a language designed primarily with XML syntax. While XML is almost universally under-

stood, it has several issues:

e The ability to compose two XML documents into one depends on the languages of those documents.
WSDL 2.0 does not permit Web service descriptions in different targetNamespaces to be merged into

a single (physical) XML document.

e The ability to extend XML languages with other XML languages depends on the languages again.
WSDL 2.0 is extremely extensible, but the meaning of every single extension in WSDL 2.0 must be
defined explicitly. Putting a piece of XMI (XML format for UML) into a WSDL 2.0 document may
have different meaning from putting it into an XHTML document. Therefore XML-based extensibil-

ity has very high cost if many languages are involved.

e Similarly, extending another XML language with pieces of WSDL 2.0, while possible, has to be
defined for all the possible destinations. Putting a WSDL 2.0 interface element into a UDDI registry
may mean a different thing from putting that interface element into an XHTML document.

e Finally, the meaning of a portion of a WSDL 2.0 document is not defined by the WSDL 2.0 specifi-
cation. While an interface element could form a single XML document, it is not a WSDL 2.0 docu-

ment, so its meaning is largely undefined.

Applications that require such levels of composability (or decomposability) are increasingly being based
on RDF [RDH [p.85]], a graph-based knowledge representation language, and Web Ontology Language
(OWL) [p.85]], which can be thought of as an advanced schema language for RDF. Effectively, a
WSDL 2.0 document represented in RDF can be more easily extended with arbitrary RDF assertions and
the WSDL 2.0 information can be more easily associated with arbitrary other knowledge.

5.5.1 RDF Representation of WSDL 2.0

WSDL 2.0: Mapping to RDfWSDL 2.0 RDF Mapping [p.83]describes how WSDL 2.0 constructs can

be expressed in RDF using classes of resources (described with an ontology expressed in OWL) and asser-
tions over individual resources. As RDF represents knowledge using resources and relationships between
them, we need to turn WSDL 2.0 concepts into this model. This is done as follows.

1. First, all components in WSDL 2.0 (like Interfaces, Operations, Bindings, Services, Endpoints etc.,
including extensions) are turned into resources identified with the appropriate URIs created according
to[Appendix C IRI-References for WSDL 2.0 ComponentfdEDL 2.0 Cole [p.83].

2. Further, things are represented as resources:

80

http://www.w3.org/TR/2006/CR-wsdl20-20060106#wsdl-iri-references

5.6 Notes on URIs

1. Element declarations gathered from XML Schema (or similarly, other components from other
type systems)

2. Message content models
3. Message exchange patterns (the URI identifying the MEP is the URI of the resource)
4. Operation styles (similarly to MEPs, the URI of an operation style is the URI of the resource)

3. All the resources above are given the appropriate types using rdf:type statements (an interface will
belong to the class Interface and an operation within an interface will belong to the class InterfaceOp-
eration, for example).

4. All relationships in WSDL 2.0 (like an Operation belonging to an Interface and having a given opera-
tion style) are turned into RDF statements using appropriate properties, syarat®on and
operationStyle

5.6 Notes on URIs

5.6.1 XML Namespaces and Schema Locations

It is a common misperception to equate either the target namespace of an XML Schema or the value of the
xmins attribute in XML instances with the location of the corresponding schema. Even though hames-
paces are URIs, and URIs may be locations, and it may be possible to retrieve a schema from such a loca-
tion, this does not mean that the retrieved schema nllgschema that is associated with that names-

pace. There can be multiple schemas associated with a particular namespace, and it is up to a processor of
XML to determine which one to use in a particular processing context. The WSDL 2.0 specification

provides the processing context here viaitiggort mechanism, which is based on XML Schema’s term

for the similar concept.

5.6.2 Relative URIs

Throughout this document there are fully qualified URIs used in WSDL 2.0 and XSD examples. In some
cases, fully qualified URIs were used simply to illustrate the referencing concepts. However, the use of
relative URIs is allowed and warranted in many cases. For information on processing relative URIs, see

[REC239%.
5.6.3 Generating Temporary URIs

In general, when a WSDL 2.0 document is published for use by others, it should only contain URIs that
are globally unique. This is usually done by allocating them under a domain name that is controlled by the
issuer. For example, the W3C allocates namespace URIs under its base domain name, w3.org.

However, it is sometimes desirable to make up a temporary URI for an entity, for use during development,
but not make the URI globally unique for all time and have it "mean” that version of the entity (schema,
WSDL 2.0 document, etclReserved Top Level DNS NanjigSTF RFC 2606 [p.84] specifies some URI

base names that are reserved for use for this type of behavior. For example, the base URI
"http://example.org/" can be used to construct a temporary URI without any unique association to an

81

http://www.ietf.org/rfc/rfc2396.txt

6. References

entity. This means that two people or programs could choose to simultaneously use the temporary URI "
http://lexample.org/userSchema" for two completely different schemas. As long as the scope of use of
these URIs does not intersect, then they would be unique enough. However, it is not recommended that "
http://lexample.org/" be used as a base for stable, fixed entities.

6. References

6.1 Normative References

[IETF RFC 2119]
[Key words for use in RFCs to Indicate Requirement LieSeBradner, Author. Internet Engineering
Task Force, June 1999. Available at http://www.ietf.org/rfc/rfc2119.txt.

[IETF RFC 3986]
[Uniform Resource Identifiers (URI): Generic SyptdxBerners-Lee, R. Fielding, L. Masinter,
Authors. Internet Engineering Task Force, January 2005. Available at
http://www.ietf.org/rfc/rfc3986.txt.

[IETF RFC 3987]
[Internationalized Resource Identifiers (IRIS). Duerst, M. Suignard, Authors. Internet Engineering
Task Force, January 2005. Available at http://www.ietf.org/rfc/rfc3987.txt.

[XML 1.0]
[Extensible Markup Language (XML) 1.0 (Third EditloR)Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, and F. Yergeau, Editors. World Wide Web Consortium, 4 February 2004. This version of
the XML 1.0 Recommendation is http://www.w3.0rg/TR/2004/REC-xmI|-20040204/[. Thd latest
[version of "Extensible Markup Language (XML) 1.0" is available at
http://www.w3.0rg/TR/REC-xml.

[XML Information Set]
(XML Information Set (Second Editipd) Cowan and R. Tobin, Editors. World Wide Web Consor-
tium, 4 February 2004. This version of the XML Information Set Recommendation is
http://www.w3.0rg/TR/2004/REC-xml-infoset-20040204. The latest version of XML Informatipn Set
is available at http://www.w3.org/TR/xml-infoset.

[XML Namespaces]
[Namespaces in XNIO. Bray, D. Hollander, and A. Layman, Editors. World Wide Web Consortium,
14 January 1999. This version of the XML Information Set Recommendation is
http://www.w3.0rg/TR/1999/REC-xml-names-19990114. [The latest version of Namespaces|in XML
is available at http://www.w3.0rg/TR/REC-xml-names.

[XML Schema: Structures]
(XML Schema Part 1: Structuged. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, Editors.
World Wide Web Consortium, 28 October 2004. This version of the XML Schema Part 1 Recom-
mendation is http://www.w3.0rg/TR/2004/REC-xmIschema-1-20041024. The latest version pf XML
1 is available at http://www.w3.0rg/TR/xmlschema-1.

[XML Schema: Datatypes]
(XML Schema Part 2: Datatyge. Byron and A. Malhotra, Editors. World Wide Web Consortium,
28 October 2004. This version of the XML Schema Part 2 Recommendation is
http://www.w3.0rg/TR/2004/REC-xmischema-2-20041028.|The latest version of XML Schema Part
[@is available at http://www.w3.0rg/TR/xmlschema-2.

82

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/2004/REC-xml-infoset-20040204
http://www.w3.org/TR/xml-infoset
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

6.1 Normative References

[RFC 3023]
IETF "RFC 3023: XML Media Types", M. Murata, S. St. Laurent, D. Kohn, July
1998.(Septtp://www.letf.org/rfc/rfc3023.tKt

[WSDL 2.0 Core]
[Web Services Description Language (WSDL) Version 2.0 Part 1: Core Lapdiagkinnici, J-J.
Moreau, A. Ryman, S. Weerawarana, Editors. World Wide Web Consortium, 6 January 2006. This
version of the "Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language"
Specification is available is available at http://www.w3.0rg/TR/2006/CR-wsdI20-20060106. The
[latest version of "Web Services Description Language (WSDL) Version 2.0 Part 1: Core Lahguage"
is available at http://www.w3.0org/TR/wsdI20.

[WSDL 2.0 Adjuncts]
[Web Services Description Language (WSDL) Version 2.0 Part 2: AdjuRctShinnici, H. Haas, A.
Lewis, J-J. Moreau, D. Orchard, S. Weerawarana, Editors. World Wide Web Consortium, 6 January
2006. This version of the "Web Services Description Language (WSDL) Version 2.0 Part 2:
Adjuncts" Specification is available at http://www.w3.0rg/TR/2006/CR-wsdl20-adjuncts-20060106.
Thef[latest version of "Web Services Description Language (WSDL) Version 2.0 Part 2: Afljuncts" is
available at http://www.w3.org/TR/wsdI20-adjuncts.

[WSDL 2.0 SOAP 1.1 Binding]
[Web Services Description Language (WSDL) Version 2.0 SOAP 1.1 BirmdinMgdamuthu, Editor.
World Wide Web Consortium, 6 January 2006. This version of the "Web Services Description
Language (WSDL) Version 2.0 SOAP 1.1 Binding" Specification is available at
http://www.w3.0rg/TR/2006/WD-wsdI20-soap11-binding-20060106.| The latest version of "Web
[Services Description Language (WSDL) Version 2.0 SOAP 1.1 Binding" is available at
http://www.w3.0org/TR/wsdl20-soapl11-binding.

[WSDL 2.0 RDF Mapping]
[Web Services Description (WSDL) Version 2.0: RDF Mapgpingopecky, B. Parsia, Editors. W3C
Working Draft, 4 November 2005. This version of the "Web Services Description Version 2.0: RDF
Mapping" Specification is available at http://www.w3.0rg/TR/2005/WD-wsdI20-rdf-20051104/. The
[latest version of "Web Services Description Version 2.0: RDF Magping" is available at
http://iwww.w3.0rg/TR/wsdI20-rdf/.

[Web Architecture]
|[Architecture of the World Wide Web, Volume [Qaa Jacobs, Norman Walsh, Editors. W3C Recom-
mendation, 15 December, 2004. Available at http://www.w3.0rg/TR/2004/REC-webarch-20041215/ .

[WS Architecture]
[Web Services ArchitectyrBavid Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael
Champion, Chris Ferris, David Orchard, Editors. W3C Working Group Note, 11 February 2004.
Available at http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/ .

[WS Glossary]
[Web Services Glossaugo Haas, Allen Brown, Editors. W3C Working Group Note, 11 February
2004. Available at http://www.w3.0rg/TR/2004/NOTE-ws-gloss-20040211/ .

[Describing Media Content of Binary Data in XML]
[Describing Media Content of Binary Data in X)MAnish Karmarkar, Umit Yalcınalp,
Editors. W3C Working Group Note 4 May 2005. Available at
http://www.w3.org/TR/xml-media-types/

83

http://www.ietf.org/rfc/rfc3023.txt
http://www.w3.org/TR/2006/CR-wsdl20-20060106
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/2006/CR-wsdl20-adjuncts-20060106
http://www.w3.org/TR/wsdl20-adjuncts
http://www.w3.org/TR/2006/WD-wsdl20-soap11-binding-20060106
http://www.w3.org/TR/wsdl20-soap11-binding
http://www.w3.org/TR/wsdl20-soap11-binding
http://www.w3.org/TR/2005/WD-wsdl20-rdf-20051104/
http://www.w3.org/TR/wsdl20-rdf/
http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/2004/REC-webarch-20041215/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/xml-media-types/

6.2 Informative References

6.2 Informative References

[IETF RFC 2606]
[Reserved Top Level DNS Najri@sEastlake, A. Panitz, Authors. Network Working Group, Internet
Engineering Task Force, June 1999. Available at http://www.ietf.org/rfc/rfc2606.txt.

[IETF RFC 2616]
[Hypertext Transfer Protocol -- HTTP/1 R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, T. Berners-Lee, Authors. Internet Engineering Task Force, June 1999. Available at
http://www.ietf.org/rfc/rfc2616.txt.

[IETF RFC 2818]
[HTTP Over TLBE. Rescorla, Author. Internet Engineering Task Force, May 2000. Available at
http://www.ietf.org/rfc/rfc2818.txt.

[SOAP 1.1]
[Simple Object Access Protocol (SOAP) D1Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. Frystyk Nielsen, S. Thatte, D. Winer, Editors. World Wide Web Consortium, 8 May
2000. This version of the Simple Object Access Protocol 1.1 Note is
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508.

[SOAP 1.2 Part 1: Messaging Framework]
[SOAP Version 1.2 Part 1: Messaging Framewddk Gudgin, M. Hadley, N. Mendelsohn, J-J.
Moreau, H. Frystyk Nielsen, Editors. World Wide Web Consortium, 24 June 2003. This version of
the "SOAP Version 1.2 Part 1: Messaging Framework" Recommendation is
http://www.w3.0rg/TR/2003/REC-soapl2-part1-20030624/.| The latest version of "SOAP Vergion 1.2
[Part 1: Messaging Framework" is available at http://www.w3.org/TR/soapl12-partl/.

[SOAP 1.2 Part 2: Adjuncts]
[SOAP Version 1.2 Part 2: Adjungtd. Gudgin, M. Hadley, N. Mendelsohn, J-J. Moreau, and H.
Frystyk Nielsen, Editors. World Wide Web Consortium, 7 May 2003. This version of the "SOAP
Version 1.2 Part 2: Adjuncts" Recommendation is
http://www.w3.0rg/TR/2003/REC-soapl2-part2-20030624/.| The latest version of "SOAP Vergion 1.2
[Part 2: Adjunctg" is available at http://www.w3.org/TR/soap12-part2/.

[SOAP MTOM]
[SOAP Message Transmission Optimization MechandmGudgin, N. Mendelsohn, M. Notting-
ham, H. Ruellan, Editors. World Wide Web Consortium, 25 January, 2005. This version of SOAP
Message Transmission Optimization Mechanism is available at
http://www.w3.0rg/TR/2005/REC-soap12-mtom-20050125/.

[WSD Requirements]
[Web Services Description RequirempdtsSchlimmer, Editor. World Wide Web Consortium, 17
October 2002. This version of the Web Services Description Requirements document is
http://www.w3.0rg/TR/2002/WD-ws-desc-reqs-20021028. |The latest version of Web Sgrvices
[Description Requirements is available at http://www.w3.org/TR/ws-desc-reqgs.

[WS-Addressing]
[Web Services Addressing 1.0 - Gdvkartin Gudgin, Microsoft Corp, Marc Hadley, Sun Microsys-
tems, Inc, Editor. World Wide Web Consortium, 17 August 2005. This version of the Web Services
Addressing 1.0 - Core document is available at http://www.w3.org/TR/ws-addr-corg/. ThHe latest
[version of Web Services Description Requirenjents is available at
http://www.w3.0rg/TR/ws-addr-core/.

84

http://www.ietf.org/rfc/rfc2606.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2003/REC-soap12-part2-20030624/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/2005/REC-soap12-mtom-20050125/
http://www.w3.org/TR/2002/WD-ws-desc-reqs-20021028
http://www.w3.org/TR/ws-desc-reqs/
http://www.w3.org/TR/ws-desc-reqs/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/

6.2 Informative References

[XPointer Framework]
[XPointer Frameworiaul Grosso, Eve Maler, Jonathan Marsh, Norman Walsh, Editors. World Wide
Web Consortium, 22 November 2002. This version of the XPointer Framework Proposed Recom-
mendation is http://www.w3.0rg/TR/2003/REC-xptr-framework-20030325{ The latest version of
[XPointer Framewolk is available at http://www.w3.0org/TR/xptr-framework/.

[W3C TAG Finding: Use of HTTP GET]
[URIs, Addressability, and the use of HTTP GET and P@®iTJacobs, Editor. World Wide Web
Consortium, 21 March 2004. This version of TAG finding is available at
http://iwww.w3.0rg/2001/tag/doc/whenToUseGet.html

[W3C TAG Finding: Versioning]
[Versioning XML LanguagH3avid Orchard, Norman Walsh. Proposed TAG Finding 16 November
2003. Available at http://www.w3.0rg/2001/tag/doc/versioning.html

[WebArch: Extensible Languages]
[Web Architecture: Extensible Languagé&m Berners-Lee, Dan Connolly, Authors. W3C Note 10
Feb 1998. Available at http://www.w3.0rg/TR/NOTE-webarch-extlang

[XML Schema: Versioning Use-Cases]
(XML Schema Versioning Use Cgsétoylen Sue. W3C XML Schema Working Group Draft, 15
April 2005. Available at http://www.w3.0rg/XML/2005/xsd-versioning-use-cases/

[SW VocabManagementNote]
[Vocabulary Managemgnfrhomas Baker, et al. Semantic Web Best Practices and Deployment
Working Group Note, 8 Feb 2005. Available at http://esw.w3.org/topic/VocabManagementNote

[RELAX NG]
[RELAX NG Specificatipdames Clark, MURATA Makoto, Editors. OASIS Committee Specifica-
tion, 3 December 2001. Available at http://www.oasis-open.org/commit-
tees/relax-ng/spec-20011203.html

[JAX RPC 1.1]
Pava(TM) API for XML-based Remote Procedure Call (JAX-RPC) Specification, vergi&ohekto
Chinnici,et al. 14 October, 2003. Available at http://java.sun.com/xml/downloads/jaxrpc.html

[REST]
[Representational State Transfer (RESR9y Thomas Fielding, Author. 2000. Available at
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[RDF]
[Resource Description Framework (RDF): Concepts and Abstract $y@itakam Klyne, Jeremy J.
Carroll, Editors. W3C Recommendation, 10 February 2004. Available at
http://iwww.w3.0rg/TR/rdf-concepts/

[OWL]
[OWL Web Ontology Language Referg¢rdike Dean,Guus Schreiber, Editors. W3C Recommenda-
tion 10 February 2004 . Available at http://www.w3.org/TR/owl-ref/

[Alternative Schema Languages Support]
[Discussion of Alternative Schema Languages and Type System Support inAVISETis, B.
Parsia, Editors.

85

http://www.w3.org/TR/2003/REC-xptr-framework-20030325/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/TR/xptr-framework/
http://www.w3.org/2001/tag/doc/whenToUseGet.html
http://www.w3.org/2001/tag/doc/versioning.html
http://www.w3.org/TR/NOTE-webarch-extlang
http://www.w3.org/XML/2005/xsd-versioning-use-cases/
http://esw.w3.org/topic/VocabManagementNote
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://java.sun.com/xml/downloads/jaxrpc.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/owl-ref/
http://dev.w3.org/cvsweb/~checkout~/2002/ws/desc/wsdl20/altschemalangs.html?content-type=text/html;%20charset=utf-8&rev=1.3

A. Acknowledgements (Non-Normative)

A. Acknowledgements (Non-Normative)

This document is the work of the W3C Web Service Description Working {5roup.

Members of the Working Group are (at the time of writing, and by alphabetical order): Charlton Barreto
(Adobe Systems Inc.), Allen Brookes (Rogue Wave Softwave), Dave Chappell (Sonic Software), Helen
Chen (Agfa-Gevaert N. V.), Roberto Chinnici (Sun Microsystems), Kendall Clark (University of Mary-
land), Glen Daniels (Sonic Software), Paul Downey (British Telecommunications), Youenn Fablet
(Canon), Hugo Haas (W3C), Tom Jordahl (Macromedia), Anish Karmarkar (Oracle Corporation), Jacek
Kopecky (DERI Innsbruck at the Leopold-Franzens-Universitat Innsbruck, Austria), Amelia Lewis
(TIBCO Software, Inc.), Michael Liddy (Education.au Ltd.), Kevin Canyang Liu (SAP AG), Jonathan
Marsh (Microsoft Corporation), Josephine Micallef (SAIC - Telcordia Technologies), Jeff Mischkinsky
(Oracle Corporation), Dale Moberg (Cyclone Commerce), Jean-Jacques Moreau (Canon), Mark Notting-
ham (BEA Systems, Inc.), David Orchard (BEA Systems, Inc.), Vivek Pandey (Sun Microsystems), Bijan
Parsia (University of Maryland), Gilbert Pilz (BEA Systems, Inc.), Tony Rogers (Computer Associates),
Arthur Ryman (IBM), Adi Sakala (IONA Technologies), Asir Vedamuthu (Microsoft Corporation),

Sanjiva Weerawarana (WS02), Umit Yalcınalp (SAP AG).

Previous members were: Lily Liu (webMethods, Inc.), Don Wright (Lexmark), Joyce Yang (Oracle
Corporation), Daniel Schutzer (Citigroup), Dave Solo (Citigroup), Stefano Pogliani (Sun Microsystems),
William Stumbo (Xerox), Stephen White (SeeBeyond), Barbara Zengler (DaimlerChrysler Research and
Technology), Tim Finin (University of Maryland), Laurent De Teneuille (L’Echangeur), Johan Pauhlsson
(L’Echangeur), Mark Jones (AT&T), Steve Lind (AT&T), Sandra Swearingen (U.S. Department of
Defense, U.S. Air Force), Philippe Le Hégaret (W3C), Jim Hendler (University of Maryland), Dietmar
Gaertner (Software AG), Michael Champion (Software AG), Don Mullen (TIBCO Software, Inc.), Steve
Graham (Global Grid Forum), Steve Tuecke (Global Grid Forum), Michael Mahan (Nokia), Bryan
Thompson (Hicks & Associates), Ingo Melzer (DaimlerChrysler Research and Technology), Sandeep
Kumar (Cisco Systems), Alan Davies (SeeBeyond), Jacek Kopecky (Systinet), Mike Ballantyne (Elec-
tronic Data Systems), Mike Davoren (W. W. Grainger), Dan Kulp (IONA Technologies), Mike McHugh
(W. W. Grainger), Michael Mealling (Verisign), Waqar Sadiq (Electronic Data Systems), Yaron Goland
(BEA Systems, Inc.), Umit Yalgınalp (Oracle Corporation), Peter Madziak (Agfa-Gevaert N. V.),
Jeffrey Schlimmer (Microsoft Corporation), Hao He (The Thomson Corporation), Erik Ackerman
(Lexmark), Jerry Thrasher (Lexmark), Prasad Yendluri (webMethods, Inc.), William Vambenepe
(Hewlett-Packard Company), David Booth (W3C), Sanjiva Weerawarana (IBM), Charlton Barreto
(webMethods, Inc.), Asir Vedamuthu (webMethods, Inc.), Igor Sedukhin (Computer Associates), Martin
Gudgin (Microsoft Corporation), Rebecca Bergersen (IONA Technologies), Ugo Corda (SeeBeyond).

The people who have contributed to discussions on www-ws-desc@w3.org are also gratefully acknowl-
edged.

86

http://www.w3.org/2002/ws/desc/
http://lists.w3.org/Archives/Public/www-ws-desc/

	Web Services Description Language (WSDL) Version 2.0 Part 0: Primer
	W3C Candidate Recommendation 6 January 2006
	Abstract
	Status of this Document
	Short Table of Contents
	Table of Contents
	Appendix

	1. Introduction
	1.1 Prerequisites
	1.2 Structure of this Primer
	1.3 Use of URI and IRI
	1.4 Notational Conventions

	2. WSDL 2.0 Basics
	2.1 Getting Started: The GreatH Hotel Example
	2.1.1 Example Scenario: The GreatH Hotel Reservation Service
	2.1.2 Defining a WSDL 2.0 Target Namespace
	2.1.2.1 Explanation of Example

	2.1.3 Defining Message Types
	2.1.3.1 Explanation of Example

	2.1.4 Defining an Interface
	2.1.4.1 Explanation of Example

	2.1.5 Defining a Binding
	2.1.5.1 Explanation of Example

	2.1.6 Defining a Service
	2.1.6.1 Explanation of Example

	2.1.7 Documenting the Service
	2.1.7.1 Explanation of Example

	2.2 WSDL 2.0 Infoset, Schema and Component Model
	2.2.1 WSDL 2.0 Infoset
	2.2.2 WSDL 2.0 Schema
	2.2.2.1 WSDL 2.0 Element Ordering

	2.2.3 WSDL 2.0 Component Model
	2.2.3.1 WSDL 2.0 Import and Include

	2.3 More on Message Types
	2.3.1 Inlining XML Schema
	2.3.2 Importing XML Schema
	2.3.3 Summary of Import and Include Mechanisms

	2.4 More on Interfaces
	2.4.1 Interface Syntax
	2.4.2 Interface Inheritance
	2.4.3 Interface Faults
	2.4.4 Interface Operations
	2.4.4.1 Operation Attributes
	2.4.4.2 Operation Message References
	2.4.4.2.1 The messageLabel Attribute
	2.4.4.2.2 The element Attribute
	2.4.4.2.3 Multiple infault or outfault Elements

	2.4.4.3 Understanding Message Exchange Patterns (MEPs)

	2.5 More on Bindings
	2.5.1 Syntax Summary for Bindings
	2.5.2 Reusable Bindings
	2.5.3 Binding Faults
	2.5.4 Binding Operations
	2.5.5 The SOAP Binding Extension
	2.5.5.1 Explanation of Example

	2.5.6 The HTTP Binding Extension
	2.5.6.1 Explanation of Example

	2.5.7 HTTP GET Versus POST: Which to Use?

	3. Advanced Topics I: Importing Mechanisms
	3.1 Importing WSDL
	3.2 Importing Schemas
	3.2.1 Schemas in Imported Documents
	3.2.2 Multiple Inline Schemas in One Document
	3.2.3 The schemaLocation Attribute
	3.2.3.1 Using the id Attribute to Identify Inline Schemas

	4. Advanced Topics II: Extensibility and Predefined Extensions
	4.1 Extensibility
	4.1.1 Optional Versus Required Extensions

	4.2 Features and Properties
	4.2.1 SOAP Modules
	4.2.2 Abstract Features
	4.2.3 Properties

	4.3 Defining New MEPs
	4.3.1 Confirmed Challenge

	4.4 RPC Style
	4.5 MTOM and Attachments Support

	5. Advanced Topics III: Miscellaneous
	5.1 Enabling Easy Message Dispatch
	5.2 Web Service Versioning
	5.2.1 Compatible Evolution
	5.2.2 Big Bang
	5.2.3 Evolving a Service
	5.2.4 Combined Approaches
	5.2.5 Examples of Versioning and Extending a Service
	5.2.5.1 Additional Optional Elements Added in Content
	5.2.5.2 Additional Optional Elements Added to a Header
	5.2.5.3 Additional Mandatory Elements in Content
	5.2.5.4 Additional Optional Operation Added to Interface
	5.2.5.5 Additional Mandatory Operation Added to Interface
	5.2.5.6 Indicating Incompatibility by Changing the Endpoint URI
	5.2.5.7 Indicating Incompatibility by Changing the SOAP Action
	5.2.5.8 Indicating Incompatibility by Changing the Element Content

	5.3 Describing Web Service Messages That Refer to Other Web Services
	5.3.1 The Reservation Details Web Service
	5.3.2 The Reservation List Web Service
	5.3.3 Reservation Details Web Service Using HTTP Transfer
	5.3.4 Reservation List Web Service Using HTTP GET

	5.4 Multiple Interfaces for the Same Service
	5.5 Mapping to RDF and Semantic Web
	5.5.1 RDF Representation of WSDL 2.0

	5.6 Notes on URIs
	5.6.1 XML Namespaces and Schema Locations
	5.6.2 Relative URIs
	5.6.3 Generating Temporary URIs

	6. References
	6.1 Normative References
	6.2 Informative References

	A. Acknowledgements (Non-Normative)

