c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)
Specification

W3C Recommendation 07 June 2011, edited in place 12 April
2016 to point to new work

This version:
http://www.w3.0rg/TR/2011/REC-CSS2-20110607
Latest version:
http://www.w3.0rg/TR/CSS2
Previous versions:
http://www.w3.0rg/TR/2011/PR-CSS2-20110412
http://www.w3.0rg/TR/2008/REC-CSS2-20080411/
Latest editor's draft:
http://dev.w3.org/csswg/css2/
Editors:
Bert Bos <bert @w3.org>
Tantek Celik <tantek @cs.stanford.edu>
lan Hickson <ian @hixie.ch>
Hakon Wium Lie <howcome @opera.com>
Please refer to the errata for this document.
This document is also available in these non-normative formats: plain text, gzip'ed tar file,
zip file, gzip'ed PostScript, PDF. See also translations.

Copyright © 2011 __l__[_?g_C__® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document
use rules apply.

Abstract

This specification defines Cascading Style Sheets, level 2 revision 1 (CSS 2.1). CSS 2.1 is
a style sheet language that allows authors and users to attach style (e.g., fonts and spac-
ing) to structured documents (e.g., HTML documents and XML applications). By separating
the presentation style of documents from the content of documents, CSS 2.1 simplifies Web
authoring and site maintenance.

CSS 2.1 builds on CSS2 [CSS2]P-284 which builds on CSS1 [CSS1]P283, It supports
media-specific style sheets so that authors may tailor the presentation of their documents to
visual browsers, aural devices, printers, braille devices, handheld devices, etc. It also sup-
ports content positioning, table layout, features for internationalization and some properties
related to user interface.

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/2011/REC-CSS2-20110607
http://www.w3.org/TR/CSS2
http://www.w3.org/TR/2011/PR-CSS2-20110412
http://www.w3.org/TR/2008/REC-CSS2-20080411/
http://dev.w3.org/csswg/css2/
http://www.w3.org/People/Bos/
http://tantek.com/
http://ian.hixie.ch/
http://people.opera.com/howcome/
http://www.w3.org/Style/css2-updates/REC-CSS2-20110607-errata.html
css2.txt
css2.tgz
css2.zip
css2.ps.gz
http://www.w3.org/2005/11/Translations/Query?titleMatch=CSS;lang=any;search1=Submit
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents
http://www.w3.org/Consortium/Legal/copyright-documents

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

CSS 2.1 corrects a few errors in CSS2 (the most important being a new definition of the
height/width of absolutely positioned elements, more influence for HTML's "style" attribute
and a new calculation of the 'clip' property), and adds a few highly requested features which
have already been widely implemented. But most of all CSS 2.1 represents a "snapshot" of
CSS usage: it consists of all CSS features that are implemented interoperably at the date of
publication of the Recommendation.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2 are un-
changed in CSS 2.1, some parts have been altered, and some parts removed. The re-
moved portions may be used in a future CSS3 specification. Future specs should refer to
CSS 2.1 (unless they need features from CSS2 which have been dropped in CSS 2.1, and
then they should only reference CSS2 for those features, or preferably reference such fea-
ture(s) in the respective CSS3 Module that includes those feature(s)).

Status of this document

This section describes the status of this document at the time of its publication. Other docu-
ments may supersede this document. A list of current W3C publications and the latest revi-
sion of this technical report can be found in the W3C technical reports index at
http://www.w3.0rg/TR/.

This document has been reviewed by W3C Members, by software developers, and by
other W3C groups and interested parties, and is endorsed by the Director as a W3C Rec-
ommendation. It is a stable document and may be used as reference material or cited from
another document. W3C's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment. This enhances the functionality
and interoperability of the Web.

The (archived) public mailing list www-style@w3.org (see instructions) is preferred for
discussion of this specification. When sending e-mail, please put the text “CSS21” in the
subject, preferably like this: “[CSS21] ...summary of comment...”

This document was produced by the CSS Working Group (part of the Style Activity).

This document was produced by a group operating under the 5 February 2004 W3C
Patent Policy. W3C maintains a public list of any patent disclosures made in connection
with the deliverables of the group; that page also includes instructions for disclosing a
patent. An individual who has actual knowledge of a patent which the individual believes
contains Essential Claim(s) must disclose the information in accordance with section 6 of
the W3C Patent Policy.

The Working Group has created a test suite and an implementation report.

All changes since the previous Working Draft, the previous Candidate Recommendation
and the previous Recommendation are listed in appendix C.P-286

\
Note: Several sections of this specification have been updated by other speci-

fications. Please, see "Cascading Style Sheets (CSS) — The Official Definition"
in the latest CSS Snapshot for a list of specifications and the sections they re-
place.

The CSS Working Group is also developing CSS level 2 revision 2 (CSS 2.2).

http://www.w3.org/TR/
http://www.w3.org/TR/
http://lists.w3.org/Archives/Public/www-style/
mailto:www-style@w3.org
http://www.w3.org/Mail/Request
http://www.w3.org/Style/CSS/members
http://www.w3.org/Style/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/32061/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
/Style/CSS/Test/
/Style/CSS/Test/CSS2.1/20110323/reports/
https://www.w3.org/TR/CSS/#css
http://www.w3.org/TR/CSS22/

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

Quick Table of Contents

1 About the CSS 2.1 Specification. 23
2introduction to CSS 2.1 i e e 30
3 Conformance: Requirements and Recommendations 38
4 Syntax and basicdatatypes il e 44
B Selectors e 67
6 Assigning property values, Cascading, and Inheritance 87
T MediatypPes . ..o oo e e 94
BBoXmodel i e e e, 98
9 Visual formattingmodel. i e 112
10 Visual formatting model details. i 152
1M Visual effects. s 172
12 Generated content, automatic numbering, andlists....................... 180
13Pagedmedia e e 196
14 Colorsand Backgroundso ittt ettt 204
IO FONtS ... e e e 211
ST =« 224
17 Tables. . .. e 233
18 Userinterfacec. i i ittt 258
Appendix A. Aural stylesheets i e 264
Appendix B. Bibliography 282
Appendix C.Changest i it ettt e e e aaaaaaanannns 286
Appendix D. Default style sheetforHTML 4 oot 402
Appendix E. Elaborate description of Stacking Contexts 404
Appendix F. Full property table i 408
Appendix G. Grammar of CSS 2.1 i i e 420
Appendix . IndeX e 426

Full Table of Contents

1 About the CSS 2.1 Specification. 23
1.1 CSS 2.1 Vs CSS 2 . . 23
1.2 Reading the specification. 24
1.3 How the specification isorganized. 24
1.4 CoNVeNtiONS 25
1.4.1 Document language elements and attributes 25
1.4.2 CSS property definitions 25
1.4.2.1Value e 25
1.4.2.21nitial 27
1.4.23ApplIeS O e 27
1.4.2.4 Inherited 27
1.4.2.5 Percentage values 27
1.4.2.6 Media groups 27
1.4.2.7 Computed value 27
1.4.3 Shorthand properties. 27

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

144 Notesand examples 28
1.4.5Images and long descriptions 28
1.5 Acknowledgments 28
2Introduction to CSS 2.1 i i i et ettt r 30
2.1 Abrief CSS 2.1 tutorial for HTML 30
2.2 Abrief CSS 2.1 tutorial for XML. 32
2.3The CSS 2.1 processingmodel i 34
231 The canvas 35
2.3.2CSS 21 addressingmodel 35
2.4 CSSdesign prinCiples 35
3 Conformance: Requirements and Recommendations 38
3.1 DefiNitioNs 38
3.2UACoNformance 42
3.3 Error conditions 43
3.4 The text/css contenttype. 43
4 Syntax and basicdatatypes i i e 44
41 Sy X . o 44
411 Tokenization 44
41,2 KeYWOIAS. . . ottt 47
4.1.2.1 Vendor-specific extensions 47
4.1.2.2 Informative Historical Notes 48
41.3Characters and Case oottt 48
414 Statements e 49
41,5 AtrUleS . . 50
41,6 BIOCKS . .. 50
4.1.7 Rule sets, declaration blocks, and selectors. 51
4.1.8 Declarations and properties 51
4.1.9 ComMmMeENES. 52
4.2 Rules for handling parsing €rrors. e 53
4.3 ValUes . . .o 55
4.3.1 Integersand real numbers 55
4.3.2 Lengths 55
4.3.3 Percentages 58
434 URLsand URIS 59
4.3.5 COoUNtErS . ..o 60
4.3.6 COlOrs . ..ot 60
4. 3.7 SHINGS . . . oot 62
4.3.8 Unsupported Values 62
4.4 CSS style sheetrepresentation 62
4.4.1 Referring to characters not represented in a character encoding 65
LIRS 7= =Y o2 o - 67
5.1 Pattern matching e 67
5.2 Selector syntax 68
5.2.1 GrOUPING .« v e ettt 69
5.3 Universal selector 69
5.4 Type seleCtors 69
5.5Descendant selectors 70

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

5.6 Child seleCtors 70
5.7 Adjacent sibling selectors 71
5.8 Attribute selectors 71
5.8.1 Matching attributes and attribute values 71
5.8.2 Default attribute values inDTDs 73
5.8.3 Class selectors 74
5.9 1D Selectors 75
5.10 Pseudo-elements and pseudo-classes 76
9. 11 PS@UdO-CIasSes o 77
5.11.1 first-child pseudo-class. 77
5.11.2 The link pseudo-classes: :linkand :visited 78
5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus. 78
5.11.4 The language pseudo-class: :lang 79
5.12 Pseudo-elements. 80
5.12.1 The first-line pseudo-element. 80
5.12.2 The first-letter pseudo-element 82
5.12.3 The :before and :after pseudo-elements. 86
6 Assigning property values, Cascading, and Inheritance 87
6.1 Specified, computed, and actual values 87
6.1.1 Specified values 87
6.1.2 Computed values 88
6. 1.3 Used values. 88
6.1.4 Actual values. 88
B.2 INheritance 88
6.2.1 The'inherit' value 89
6.3 The @IMportrule. 89
6.4 Thecascade 90
6.4.1 Cascading order 91
6.4.2 Importantrules 91
6.4.3 Calculating a selector's specificity. L 92
6.4.4 Precedence of non-CSS presentational hints 93
TMediatypPesot i it e e 94
7.1 Introductiontomediatypes 94
7.2 Specifying media-dependent stylesheets 94
7.21The @mediarule. 95
7.3 Recognized mediatypes o 95
7.3. 1 Media groUpsS. . . .ot 96
8Boxmodel e 98
8.1 BOX AIMENSIONSo 98
8.2 Example of margins, padding, and borders. L. 100
8.3 Margin properties: 'margin-top', 'margin-right', 'margin-bottom’, 'margin-left', and 'mar-
OIN L 102
8.3.1 Collapsing margins 103
8.4 Padding properties: 'padding-top’, 'padding-right', 'padding-bottom’, 'padding-left’, and
Padding'. . .. 105
8.5 Border properties 106

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

8.5.1 Border width: 'border-top-width', 'border-right-width', 'oorder-bottom-width', 'border-

left-width', and 'border-width' 106
8.5.2 Border color: 'border-top-color', 'border-right-color', 'border-bottom-color', 'border-
left-color', and 'border-color' 108
8.5.3 Border style: 'border-top-style', 'border-right-style', 'border-bottom-style', 'border-left-
style', and 'border-style' 109
8.5.4 Border shorthand properties: 'border-top’, 'border-right', 'border-bottom’, 'border-left’,
and DOrder . . . 110
8.6 The box model for inline elements in bidirectional context 111
9 Visual formatting model. i 112
9.1 Introduction to the visual formattingmodel 112
9.1.1 The VIeWport e 113
9.1.2Containing blocks 113
9.2 Controlling box generation. e 113
9.2.1 Block-level elements and block boxes L. 113
9.2.1.1 Anonymous block boXes 114
9.2.2 Inline-level elements and inline boxes. 116
9.2.2.1 Anonymous inline boXes 116
9.23 RUN-IN DOXESo 116
9.2.4 The 'display' property 116
9.3 Positioning schemes 118
9.3.1 Choosing a positioning scheme: 'position' property 118
9.3.2 Box offsets: 'top', 'right', 'bottom’, 'left' 119
9.4 Normal flow e 121
9.4.1 Block formattingcontexts 121
9.4.2 Inline formattingcontexts 122
9.4.3 Relative positioning 124
O S Floats . . .o 125
9.5.1 Positioning the float: the 'float' property. 129
9.5.2 Controlling flow next to floats: the 'clear' property. 131
9.6 Absolute positioning. 134
9.6.1 Fixed positioning 134
9.7 Relationships between 'display', 'position’, and 'float' 136
9.8 Comparison of normal flow, floats, and absolute positioning. 137
9.8 1 Normal flow e 137
9.8.2 Relative positioning 138
9.8 3 Floatingabox e 139
9.8.4 Absolute positioning 142
9.9 Layered presentation 145
9.9.1 Specifying the stack level: the 'z-index' property. 145
9.10 Text direction: the 'direction' and 'unicode-bidi' properties. 147
10 Visual formatting model details. i i 152
10.1 Definition of "containing block". 152
10.2 Content width: the 'width' property. L 154
10.3 Calculatingwidths and margins 0
10.3.1 Inline, non-replaced elements. 156
10.3.2 Inline, replaced elements 156

visudet.html#Computing_widths_and_margins

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

10.3.3 Block-level, non-replaced elements innormalflow. 156
10.3.4 Block-level, replaced elements innormalflow 157
10.3.5 Floating, non-replaced elements. 157
10.3.6 Floating, replaced elements 157
10.3.7 Absolutely positioned, non-replaced elements 157
10.3.8 Absolutely positioned, replaced elements. 159
10.3.9 'Inline-block’, non-replaced elements in normal flow. 159
10.3.10 'Inline-block’, replaced elements innormal flow 159
10.4 Minimum and maximum widths: 'min-width' and 'max-width". 159
10.5 Content height: the 'height' property 161
10.6 Calculating heightsand margins 0
10.6.1 Inline, non-replaced elements 163
10.6.2 Inline replaced elements, block-level replaced elements in normal flow, 'inline-
block' replaced elements in normal flow and floating replaced elements. 163
10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to 'vis-
Dl . o 164
10.6.4 Absolutely positioned, non-replaced elements 164
10.6.5 Absolutely positioned, replacedelements. 165
10.6.6 Complicated Cases 166
10.6.7 'Auto’ heights for block formatting contextroots 166
10.7 Minimum and maximum heights: 'min-height' and 'max-height'. 166
10.8 Line height calculations: the 'line-height' and 'vertical-align' properties. 168
10.8.1 Leading and half-leading. 168
1M Visual effects.o i e 172
11.1 Overflow and Clipping. 172
11.1.1 Overflow: the 'overflow' property 172
11.1.2 Clipping: the 'clip' property e 175
11.2 Visibility: the 'visibility' property 177
12 Generated content, automatic numbering, andlists....................... 180
12.1 The :before and :after pseudo-elements 180
12.2 The 'content' property 39
12.3 Quotation marks. 183
12.3.1 Specifying quotes with the 'quotes' property 183
12.3.2 Inserting quotes with the 'content' property. L. 185
12.4 Automatic counters and numbering. 186
12.4.1 Nested counters and scope. 188
12.4.2 Counter styles 189
12.4.3 Counters in elements with 'display: none' 189
12 S LiStS . o o 190
12.5.1 Lists: the 'list-style-type', 'list-style-image’, 'list-style-position', and 'list-style' proper-
S L L 190
13Pagedmedia i it e 196
13.1 Introductionto paged media 196
13.2 Page boxes: the @pagerule e 196
13.2.1 Page margins e 197
13.2.2 Page selectors: selecting left, right, and firstpages 198
13.2.3 Content outside the page box 199

visudet.html#Computing_heights_and_margins

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

13.3 Page breaks. 199
13.3.1 Page break properties: 'page-break-before', 'page-break-after', 'page-break-
NSIR . . 199
13.3.2 Breaks inside elements: 'orphans’, 'widows' oL 201
13.3.3 Allowed page breaks. 201
13.3.4 Forced page breaks 202
13.3.5"Best" page breaks 202
13.4 Cascadinginthe page context. 203
14 Colorsand Backgroundsttt i it i e e e e aannns 204
14.1 Foreground color: the 'color' property 204
14.2 The background. 204
14.2.1 Background properties: 'background-color', 'background-image', '‘background-
repeat’, 'background-attachment’, 'background-position', and 'background’ 205
IO FONtS .. e e e 211
15.1 Introduction 211
15.2 Font matching algorithm 211
15.3 Font family: the 'font-family' property L 212
15.3.1 Genericfontfamilies 214
16.3.1.7 Serif. . o e 214
16.3.1.2 8aNS-SEIIf . . . o e 214
18.3.1.3 CUISIVE 215
18.3.1.4 fantasy 215
15.3.1.5MmoNosSpace. 215
15.4 Font styling: the 'font-style' property L 216
15.5 Small-caps: the 'font-variant' property 216
15.6 Font boldness: the 'font-weight' property L. 217
15.7 Font size: the 'font-size' property 219
15.8 Shorthand font property: the 'font' property 221
T =« 224
16.1 Indentation: the 'text-indent' property. 224
16.2 Alignment: the 'text-align' property. 225
16.3 Decoration 226
16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration' property. .. 226
16.4 Letter and word spacing: the 'letter-spacing' and 'word-spacing' properties 228
16.5 Capitalization: the 'text-transform' property, 229
16.6 White space: the 'white-space' property 230
16.6.1 The 'white-space' processingmodel 231
16.6.2 Example of bidirectionality with white space collapsing 232
16.6.3 Control and combining characters' details 232
17 Tables. . .. e 233
17.1 Introductiontotables 233
17.2 The CSStable model. e 235
17.2.1 Anonymous tableobjects 236
17.3 COolUMNS. . . o 238
17.4 Tables in the visual formattingmodel 239
17.4.1 Caption position and alignment. 240
17.5 Visual layout of tablecontents 241

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

17.5.1 Table layers and transparency 242
17.5.2 Table width algorithms: the 'table-layout' property 245
17.5.2.1 Fixed table layout e 245
17.5.2.2 Automatic table layout 246
17.5.3 Table height algorithms.. 248
17.5.4 Horizontal alignmentinacolumn 250
17.5.5 Dynamicrow and columneffects 250
17.6 BOrders 250
17.6.1 The separated borders model 250
17.6.1.1 Borders and Backgrounds around empty cells: the 'empty-cells’ property. .. 252
17.6.2 The collapsing bordermodel 253
17.6.2.1 Border conflict resolution 254
17.6.3 Border styles 256
18 Userinterface i ettt e 258
18.1 Cursors: the 'cursor property. 258
18.2 System Colors 259
18.3 User preferences forfonts 261
18.4 Dynamic outlines: the 'outline' property 261
18.4.1 Outlines and the focus. 263
18.5 Magnification 263
Appendix A. Aural stylesheets i i e 264
A.1 The media types 'aural'and 'speech'. 264
A.2 Introduction to aural style sheets. 265
A2 ANGIES. . . 265
A2 2 TIMES . . 266
A2 3 FreqUeNCIES 266
A.3 Volume properties: 'volume' 266
A.4 Speaking properties: 'speak’ 267
A.5 Pause properties: 'pause-before’, 'pause-after’, and 'pause’., 268
A.6 Cue properties: 'cue-before’, 'cue-after’,and 'cue'. 269
A.7 Mixing properties: 'play-during’ 270
A.8 Spatial properties: 'azimuth' and 'elevation'., 271
A.9 Voice characteristic properties: 'speech-rate', 'voice-family', 'pitch’, 'pitch-range’, 'stress’,
and MChNess 274
A.10 Speech properties: 'speak-punctuation' and 'speak-numeral' 277
A.11 Audiorendering of tables. 277
A.11.1 Speaking headers: the 'speak-header' property 278
A.12 Sample style sheet for HTML 280
A3 EmMacspeak 281
Appendix B. Bibliography i e 282
B.1 Normative references 282
B.2 Informative references. 283
Appendix C. Changesttt it ittt ettt e e e nnannnnnnnnns 286
C.1 Additional property values. 298
C.1.1Section 4.3.6 COlOrsottt e 298
C.1.2 Section 9.2.4 The 'display' property 298
C.1.3 Section 12.2 The 'content' property 298

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.1.4 Section 16.6 White space: the 'white-space' property 299
C.1.5 Section 18.1 Cursors: the 'cursor' property. 299
E C.2 Changes 299
- C.2.1Section 1.1 CSS 2.1 VS CSS 2 . . . oottt e 299
- C.2.2 Section 1.2 Reading the specification. 299
E C.2.3 Section 1.3 How the specificationisorganized 299
£ C.24Section1.4.21Value 299
8 C.2.5Section 1.4.2.6 Media groupS oo i ittt 299
- C.2.6 Section 1.4.2.7 Computed value. 299
U C.2.7 Section 1.4.4 Notesandexamples. 299
m C.2.8 Section 1.5 Acknowledgments 300
3 C.2.9 Section 3.2 Conformance e 300
C.2.10 Section 3.3 Error Conditions. 300
C.2.11 Section 4.1.1 Tokenization 300
C.2.12 Section 4.1.3 Charactersand case. 300
C.2.13 Section 4.2 Rules for handling parsingerrors. 301
C.2.14 Section 4.3 Values e 301
C.2158Section4.3.2Lengths. 301
C.2.16 Section4.3.4 URLsand URIs. 301
C.2.17 Section 4.3.5 Counters i e 301
C.2.18 Section 4.3.6 COlOrsot e 301
C.2.19 Section 4.3.8 Unsupported Values 301
C.2.20 Section 4.4 CSS style sheetrepresentation. 301
C.2.21 Section 5.8.1 Matching attributes and attribute values. 302
C.2.22 Section5.8.3Classselectors i 302
C.2.23 Section5.91ID selectors e 302
C.2.24 Section 5.10 Pseudo-elements and pseudo-classes 302
C.2.25 Section 5.11.2 The link pseudo-classes: :link and :visited 302
C.2.26 Section 5.11.4 The language pseudo-class::lang 302
C.2.27 Section 5.12.1 The :first-line pseudo-element 302
C.2.28 Section 5.12.2 The first-letter pseudo-element 303
C.2.29 Section 6.1 Specified, computed, and actual values 303
C.2.30 Section 6.4.1 Cascadingorder. 303
C.2.31 Section 6.4.3 Calculating a selector's specificity 303
C.2.32 Section 6.4.4 Precedence of non-CSS presentational hints. 303
C.2.33 Section 7.3 Recognized Media Types 303
C.2.34 Section 7.3. 1 Media GroupsS oo oot i e e 304
C.2.35 Section 8.3 Margin properties. 304
C.2.36 Section 8.3.1 Collapsingmargins 304
C.2.37 Section 8.4 Padding properties. e 304
C.2.38 Section 8.5.2Bordercolor 304
C.2.39 Section 8.5.3Borderstyle. 304
C.2.40 Section 8.6 The box model for inline elements in bidirectional context 304
C.2.41 Section 9.1.2 Containingblocks 305
C.2.42 Section 9.2.1.1 Anonymous block boxes 305
C.2.43 Section 9.2.2.1 Anonymous inlineboxes 305
C.2.44 Section 9.2.3 RUN-iN bOXES. 305

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.2.45 Section 9.2.4 The 'display' property 305
C.2.46 Section 9.3.1 Choosing a positioningscheme 305
C.2.47 Section 9.3.2Box offsets 305
C.2.48 Section 9.4.1 Block formattingcontexts 306
C.2.49 Section 9.4.2 Inline formattingcontext 306
C.2.50 Section 9.4.3 Relative positioning. 306
C.251Section 9.5 Floats. e 306
C.2.52 Section 9.5.1 Positioning thefloat 306
C.2.53 Section 9.5.2 Controlling flow nexttofloats 306
C.2.54 Section 9.7 Relationships between 'display’, 'position’, and 'float' 307
C.2.55 Section 9.9 Layered presentation. 307
C.2.56 Section 9.10 Textdirection. 307
C.2.57 Chapter 10 Visual formatting model details 307
C.2.58 Section 10.1 Definition of "containing block" 307
C.2.59 Section 10.2 Contentwidth. 308
C.2.60 Section 10.3 Calculating widthsand margins. 308
C.2.61 Section 10.3.2 Inline, replaced elements 308
C.2.62 Section 10.3.3 Block-level, non-replaced elements in normal flow. 308
C.2.63 Section 10.3.4 Block-level, replaced elements in normalflow 308
C.2.64 Section 10.3.5 Floating, non-replaced elements 308
C.2.65 Section 10.3.6 Floating, replaced elements 308
C.2.66 Section 10.3.7 Absolutely positioned, non-replaced elements 308
C.2.67 Section 10.3.8 Absolutely positioned, replaced elements 309
C.2.68 Section 10.4 Minimum and maximumwidths 309
C.2.69 Section 10.5 Contentheight 309
C.2.70 Section 10.6 Calculating heightsand margins 309
C.2.71 Section 10.6.1 Inline, non-replaced elements. 310

C.2.72 Section 10.6.2 Inline replaced elements, block-level replaced elements in normal
flow, 'inline-block' replaced elements in normal flow and floating replaced elements . 310
C.2.73 Section 10.6.3 Block-level non-replaced elements in normal flow when 'overflow'

computesto'visible' 310
C.2.74 Section 10.6.4 Absolutely positioned, non-replaced elements 310
C.2.75 Section 10.6.5 Absolutely positioned, replaced elements 310
C.2.76 Section 10.7 Minimum and maximum heights 310
C.2.77 Section 10.8 Line height calculations 310
C.2.78 Section 10.8.1 Leading and half-leading 311
C.2.79 Section 11.1 Overflow and clipping 311
C.2.80 Section 11.1.1 Overflow 311
C.2.81 Section 11.1.2 Clipping: the 'clip' property 311
C.2.82 Section 11.2 Visibility 312
C.2.83 Chapter 12 Generated content, automatic numbering, and lists 312
C.2.84 Section 12.1 The :before and :after pseudo-elements 312
C.2.85 Section 12.2 The 'content' property 312
C.2.86 Section 12.3.2 Inserting quotes with the 'content' property 312
C.2.87 Section 12.4 Automatic counters and numbering. 312
C.2.88 Section 12.4.1 Nested countersandscope 312
C.2.89 Section 12.5 Listst 313

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.2.90 Section 12.5.1 Lists 313

C.291 Chapter13Pagedmedia 313

E C.2.92 Section 13.2.2Page selectors 313
- C.2.93 Section 13.3.1 Page break propertiesouuuueeeeieo... 313
- C.2.94 Section 13.3.3 Allowed page breaks 313
E C.2.95 Section 14.2.1 Background properties 313
£ C.2.96 Section 14.3 Gamma correction.ot 314
S C.2.97 Chapter 15 FONESottt e e e e e e e e 314
§ C.2.98 Section 15.2 Font matching algorithm 314
U C.2.99 Section 15.2.2 Fontfamily 314
m C.2.100 Section 15.5Small-caps. oo oo it 314
3 C.2.101 Section 15.6 Fontboldness 314
C.2.102 Section 15.7 Fontsize 314

C.2103 Chapter 16 Text e e 315

C.2.104 Section 16.2 Alignment. 315

C.2.105 Section 16.3.1 Underlining, over lining, striking, and blinking. 315

C.2.106 Section 16.4 Letterandwordspacing 315

C.2.107 Section 16.5 Capitalization. 315

C.2.108 Section 16.6 White space. e 315

C.2109 Chapter 17 Tables e 316

C.2.110 Section 17.2 The CSStablemodel. 316

C.2.111 Section 17.2.1 Anonymous tableobjects 316

C.2.112 Section 17.4 Tables in the visual formattingmodel 316

C.2.113 Section 17.4.1 Caption position and alignment 316

C.2.114 Section 17.5 Visual layout of table contents. 316

C.2.115 Section 17.5.1 Table layers and transparency 317

C.2.116 Section 17.5.2.1 Fixed table layout. 317

C.2.117 Section 17.5.2.2 Automatictable layout 317

C.2.118 Section 17.5.3 Table height algorithms 317

C.2.119 Section 17.5.4 Horizontal alignmentinacolumn 317

C.2.120 Section 17.6 Borders 317

C.2.121 Section 17.6.1 The separated borders model. 317

C.2.122 Section 17.6.1.1 Borders and Backgrounds around empty cells 318

C.2.123 Section 17.6.2 The collapsing bordermodel 318

C.2.124 Section 17.6.2.1 Border conflictresolution. 318

C.2.125 Section 18.1 Cursors: the 'cursor' property. 318

C.2.126 Section 18.4 Dynamicoutlines 318

C.2.127 Chapter 12 Generated content, automatic numbering, and lists 318

C.2.128 Appendix A. Aural stylesheets. 318

C.2.129 Appendix A Section 5 Pause properties. i L 318

C.2.130 Appendix A Section 6 Cue properties. 319

C.2.131 Appendix A Section 7 Mixing properties. 319

C.2.132 Appendix B Bibliography. 319

C.2.183 Other. . .o 319

CL B ErTOrS. o 319

C.3.1 Shorthand properties 319

C. 3 2 AppliesS 0 . . 320

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.3.3Section4.1.1(and G2) 320
C.3.4 Section4.1.3 Charactersand case.t 320
C.3.5 Section 4.3 (Double signproblem) 320
C.3.6Section4.3.2Lengths. 320
C.3.7 Section4.3.3Percentagest 320
C.3.8Section4.3.4URLsand URIs. 320
C.3.9Section4.3.5 Counters 321
C.3.10 Section 4.3.6 COlOrsot 321
C.3.11 Section 4.3.7 Strings. 321
C.3.12 Section 5.10 Pseudo-elements and pseudo-classes 321
C.3.13 Section 6.4 Thecascade 321
C.3.14 Section 8.1 Box DImMeNnsions.t 321
C.3.15 Section 8.2 Example of margins, padding, and borders. 321
C.3.16 Section 8.5.4 Border shorthand properties. 321
C.3.17 Section 9.2.1 Block-level elements and block boxes 322
C.3.18 Section 9.3.1 Choosing a positioningscheme 322
C.3.19 Section 9.3.2Box offsets 322
C.3.20 Section 9.4.1 Block formattingcontexts 322
C.3.21 Section 9.4.2 Inline formattingcontext 322
C.3.22 Section 9.4.3 Relative positioning. 322
C.3.23 Section 9.5 Floats. e 322
C.3.24 Section 9.5.1 Positioning thefloat 323
C.3.25 Section 9.5.2 Controlling flow nexttofloats 323
C.3.26 Section 9.6 Absolute positioning. 323
C.3.27 Section 9.7 Relationships between 'display’, 'position’, and 'float' 323
C.3.28 Section 9.10 Textdirection. 323
C.3.29 Section 10.1 Definition of "containing block" 323
C.3.30 Section 10.3.3 Block-level, non-replaced elements in normal flow. 323
C.3.31 Section 10.4 Minimum and maximumwidths 323
C.3.32 Section 10.6.3 Block-level non-replaced elements in normal flow when 'overflow'

computesto'visible' 324
C.3.33 Section 10.7 Minimum and maximum heights 324
C.3.34 Section 1111 Overflow 324
C.3.35 Section 11.1.2 Clipping: the 'clip' property 324
C.3.36 Section 11.2 Visibility 324
C.3.37 Section 12.4.2 Counterstyles. e 324
C.3.38 Section 12.6.2 Lists 324
C.3.39 Section 14.2 The background. 325
C.3.40 Section 14.2.1 Background properties i 325
C.3.41 Section 15.2 Font matching algorithm 325
C.3.42 Section 15.7 Fontsize e 325
C.3.43 Section 16.1 Indentation. 325
C.3.44 Section 16.2 Alignment. 325
C.3.45 Section 17.2 The CSStablemodel. 326
C.3.46 Section 17.2.1 Anonymous tableobjects 326
C.3.47 Section 17.4 Tables in the visual formattingmodel 326
C.3.48 Section 17.5 Visual layout of table contents. 326

— 13—

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.3.49 Section 17.5.1 Table layers and transparency 326
C.3.50 Section 17.6.1 The separated bordersmodel. 327
E C.3.51 Section 18.2System Colors 327
- C.3.52 Section E.2 Painting Order 327
- C.A Clanificationso oot e 327
E C.4.1 Section 2.1 A brief CSS 2.1 tutorial for HTML 327
£ C.4.2 Section 2.2 A brief CSS 2.1 tutorial for XML. 327
8 C.4.3 Section 2.3 The CSS 2.1 processingmodel. 327
- C.4.4 Section 3.1 Definitions 328
U C.4.5Section 4.1 Syntax 328
m C.4.6 Section4.1.1 Tokenization 328
3 C.4.7 Section4.1.3 Charactersand case. 328
C.4.8 Section 4.1.7 Rule sets, declaration blocks, and selectors. 328
C.4.9 Section 4.2 Rules for handling parsingerrors. 328
C.4.10 Section 4.3.1 Integersand realnumbers 329
C.4.11 Section4.3.2Lengths. 329
C.4.12Section4.3.4URLsand URIs. 329
C.4.13 Section 5.1 Patternmatching 329
C.4.14 Section 5.7 Adjacent sibling selectors 329
C.4.15 Section 5.8.1 Matching attributes and attribute values. 329
C.4.16 Section 5.8.2 Default attribute values inDTDs 329
C.4.17 Section 5.9 ID selectors 329
C.4.18 Section 5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus 329
C.4.19 Section 5.11.4 The language pseudo-class: :lang 330
C.4.20 Section 5.12.2 The :first-letter pseudo-element 330
C.4.21 Section 6.2 Inheritance. 330
C.4.22 Section 6.2.1 The'inherit'value 330
C.4.23 Section 6.3 The @importrule. 330
C.4.24 Section6.4The Cascade e 330
C.4.25 Section 6.4.1 Cascadingorder. 330
C.4.26 Section 6.4.3 Calculating a selector's specificity 330
C.4.27 Section 7.2.1 The @mediarule 330
C.4.28 Section 7.3 Recognized mediatypes 331
C.4.29 Section 7.3.1 Media groups oo ittt 331
C.4.30 Section 8.1 Box dimensioNns 331
C.4.31 Section 8.3 Margin properties. 331
C.4.32 Section 8.3.1 Collapsingmargins 331
C.4.33 Section8.5.3Borderstyle. 331
C.4.34 Section 9.1.1 Theviewport. 332
C.4.35 Section 9.2.4 The 'display' property 332
C.4.36 Section 9.3.1 Choosing a positioningscheme 332
C.4.37 Section 9.3.2Box offsets 332
C.4.38 Section 9.4.2 Inline formattingcontext 332
C.4.39 Section 9.4.3 Relative positioning. 332
C.4.40 Section 9.5 Floats. e 333
C.4.41 Section 9.5.1 Positioning thefloat 333
C.4.42 Section 9.5.2 Controlling flow nexttofloats 333

— 14—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.4.43 Section 9.8 Comparison of normal flow, floats, and absolute positioning. 333
C.4.44 Section 10.1 Definition of "containing block" 333
C.4.45 Section 10.2 Contentwidth. 333
C.4.46 Section 10.3.3 Block-level, non-replaced elements in normal flow. 333
C.4.47 Section 10.3.8 Absolutely positioning, replaced elements 333
C.4.48 Section 10.4 Minimum and maximumwidths 334
C.4.49 Section 10.6 Calculating heightsand margins 334
C.4.50 Section 10.7 Minimum and maximum heights 334
C.4.51 Section 10.8 Line height calculations 334
C.4.52 Section 10.8.1 Leading and half-leading 334
C.4.53 Section 11.1 Overflow and clipping 334
C.4.54 Section 1111 Overflow 334
C.4.55 Section 11.1.2 Clipping. . . .« oo 334
C.4.56 Section 11.2 Visibility 335
C.4.57 Section 12.1 The :before and :after pseudo-elements 335
C.4.58 Section 12.2 The 'content' property 335
C.4.59 Section 12.3.2 Inserting quotes with the 'content' property 335
C.4.60 Section 12.4 Automatic counters and numbering. 335
C.4.61 Section 12.4.3 Counters in elements with 'display: none'. 335
C.4.62 Section 14.2 The background. 335
C.4.63 Section 15.1 Fonts Introduction 336
C.4.64 Section 15.2 Font matching algorithm 336
C.4.65 Section 15.2.2 Fontfamily 336
C.4.66 Section 15.3.1 Generic fontfamilies. 336
C.4.67 Section 154 Fontstyling 336
C.4.68 Section 15.5Small-caps. oot 336
C.4.69 Section 15.6 Fontboldness 337
C.4.70 Section 15.7 Fontsize 337
C.4.71 Section 16.1 Indentation. 337
C.4.72 Section 16.2 Alignment. 337
C.4.73 Section 16.3.1 Underlining, over lining, striking, and blinking. 337
C.4.74 Section 16.5 Capitalization. 337
C.4.75 Section 16.6 White space. 337
C.4.76 Section 17.1 Introductiontotables L. 337
C.4.77 Section 17.2 The CSStablemodel. 338
C.4.78 Section 17.2.1 Anonymous tableobjects 338
C.4.79 Section 17.4 Tables in the visual formattingmodel 338
C.4.80 Section 17.5 Visual layout of table contents. 338
C.4.81 Section 17.5.1 Table layers and transparency 338
C.4.82 Section 17.5.2 Table width algorithms 339
C.4.83 Section 17.5.2.1 Fixed table layout. 339
C.4.84 Section 17.5.2.2 Automatictablelayout 339
C.4.85 Section 17.5.4 Horizontal alignmentinacolumn 339
C.4.86 Section 17.5.5 Dynamic row and columneffects 339
C.4.87 Section 17.6.1 The separated bordersmodel. 339
C.4.88 Section 17.6.2 The collapsing borders model. 339
C.4.89 Section 18.2System Colors 340

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.4.90 Section 18.4 Dynamicoutlines i 340
C.4.91 Section 18.4.1 Outlinesand thefocus 340
E C.4.92 Appendix D Default style sheetfor HTML 4 340
- C.5 Errata since the Candidate Recommendation of July 2007 340
- C.5.18eCtoN 1.4.2.1ValUEot e 340
E C.5.2 Section 2.3 The CSS 2.1 processingmodel. 340
£ C.5.3 Section 3.1 Definitions 340
8 C.5.4 Section4.1.1 Tokenization 340
§ C.5.5 Section 4.1.2.2 Informative Historical Notes. 341
U C.5.6 Section 4.1.3 Charactersand case., 341
m C.5.7 Section 4.1.3 Charactersand case. 341
3 C.5.8 Section 4.1.3 Charactersand case., 341
C.5.9 Section 4.1.3 Charactersand case. i, 341
C.5.10 Section 4. 1.5 At-rules 341
C.5.11 Section 4.1.7 Rule sets, declaration blocks, and selectors. 342
C.5.12 Section 4.2 Rules for handling parsingerrors. 342
C.5.13 Section 4.2 Rules for handling parsingerrors. 342
C.5.14 Section4.3.2Lengths. 342
C.5.15Section4.3.5 Counters. 342
C.5.16 Section 5.8.1 Matching attributes and attribute values. 343
C.5.17 Section 5.8.2 Default attribute values inDTDs 343
C.5.18 Section 5.11.4 The language pseudo-class: :lang 343
C.5.19 Section 5.12.3 The :before and :after pseudo-elements. 343
C.5.20 Section 6.3 The @importrule. 343
C.5.21 Section 6.3 The @importrule. 343
C.5.22 Section 6.4.1 Cascadingorder. 344
C.5.23 Section 6.4.1 Cascadingorder. 344
C.5.24 Section 7.2.1 The @mediarule 344
C.5.25 Section 8.3.1 Collapsingmargins 344
C.5.26 Section 8.3.1 Collapsingmargins e 344
C.5.27 Section 8.3.1 Collapsingmarginst 345
C.5.28 Section 9.2.2 Inline-level elements and inlineboxes 345
C.5.29 Section 9.2.4 The 'display' property 345
C.5.30 Section 9.3.2 Box offsets: 'top', 'right', 'bottom’, 'left'. 345
C.5.31Section 9.5 Floats. e 345
C.5.32Section 9.5 Floats. e 345
C.5.33 Section 9.5.2 Controlling flow next to floats: the 'clear' property 346
C.5.34 Section 9.6.1 Fixed positioning. i 346
C.5.35 Section 9.9.1 Specifying the stack level: the 'z-index' property 346
C.5.36 Section 10.1 Definition of "containing block" 346
C.5.37 Section 10.3 Calculating widthsand margins. 346
C.5.38 Section 10.3.1 Inline, non-replaced elements. 347
C.5.39 Section 10.3.2 Inline, replaced elements 347
C.5.40 Section 10.3.2 Inline, replaced elements 347
C.5.41 Section 10.3.3 Block-level, non-replaced elements in normal flow. 347
C.5.42 Section 10.3.7 Absolutely positioned, non-replaced elements 348
C.5.43 Section 10.3.7 Absolutely positioned, non-replaced elements 348

—16 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.5.44 Section 10.3.8 Absolutely positioned, replaced elements 348
C.5.45 Section 10.3.8 Absolutely positioned, replaced elements 348
C.5.46 Section 10.3.8 Absolutely positioned, replaced elements 349
C.5.47 Section 10.5 Content height: the 'height' property 349
C.5.48 Section 10.6.2 Inline replaced elements [...] 349
C.5.49 Section 10.6.4 Absolutely positioned, non-replaced elements 349
C.5.50 Section 10.6.5 Absolutely positioned, replaced elements 349
C.5.51 Section 10.8.1 Leading and half-leading 349
C.5.52 Section 11.1.1 Overflow: the 'overflow' property. 349
C.5.53 Section 11.1.2 Clipping: the 'clip' property 350
C.5.54 Section 12.2 The 'content' property 350
C.5.55 Section 12.4.2 Counterstyles. i 350
C.5.56 Section 12.5 Lists e 350
C.5.57 Section 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and
list-style' properties 350
C.5.58 Section 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and
list-style' properties 351
C.5.59 Section 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and
list-style' properties 351
C.5.60 Section 13.2 Page boxes: the @pagerule. 351
C.5.61 Section 13.2.1.1 Rendering page boxes that do not fit a target sheet 351
C.5.62 Section 13.2.3 Content outside the page box. 351
C.5.63 Section 13.3.1 Page break properties: 'page-break-before’, 'page-break-after’,
'‘Page-break-inside’ 352
C.5.64 Section 13.3.1 Page break properties: 'page-break-before’, 'page-break-after',
'‘Page-break-inside’ 352
C.5.65 Section 13.3.2 Breaks inside elements: 'orphans', 'widows'. 352
C.5.66 Section 13.3.2 Breaks inside elements: 'orphans', 'widows'. 352
C.5.67 Section 13.3.3 Allowed page breaks 352
C.5.68 Section 13.3.3 Allowed page breaks 352
C.5.69 Section 13.3.3 Allowed page breaks 352
C.5.70 Section 13.3.5"Best" page breaks 353
C.5.71 Section 14.2 The background. 353
C.5.72 Section 14.2 The background. 353

C.5.73 Section 14.2.1 Background properties: 'background-color', 'background-image’,
'‘background-repeat’, 'background-attachment’, 'background-position', and 'back-

GroUNd’ . L L 353
C.5.74 Section 15.6 Font boldness: the 'font-weight' property. 353
C.5.75 Section 16.6 Whitespace: the 'white-space' property 354
C.5.76 Section 16.6.1 The 'white-space' processingmodel. 354
C.5.77 Section 17.2.1 Anonymous tableobjects 354
C.5.78 Section 17.2.1 Anonymous tableobjects 354
C.5.79 Section 17.4 Tables in the visual formattingmodel 355
C.5.80 Section 17.5.4 Horizontal alignmentinacolumn 355
C.5.81 Section 18.1 Cursors: the 'cursor' property. 355
C.5.82 Section B.2 Informative references. 355
C.5.83 Appendix D. Default style sheetfor HTML 4. 355

—17-

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.5.84 Appendix D. Default style sheetfor HTML 4. 355

C.5.85 Section E.2 Paintingorder 356

E C.5.86 Appendix G. Grammarof CSS 2.1 356
- C.5.87 Section G.1 Grammar.o oottt e et e e 356
- C.5.88 Section G.2 Lexical scanner. i 356
E C.5.89 Section G.2 Lexical scanner. 356
£ C.5.90 Section G.2 Lexical scanner. it 357
8 C.5.91 Section G.2 Lexical scanner. 357
- C.5.92 Appendix L. Index 357
U C.6 Errata since the Candidate Recommendation of April 2009 357
m C.6.1 Section 4.2 Rules for handling parsingerrors. 357
3 C.6.2 Section 13.3.3 Allowed page breaks 357
C.6.3 Section 15.3 Font family: the 'font-family' property. 358

C.6.4 Section 15.3. 1.1 serif 358

C.6.5 Section 15.7 Font size: the 'font-size' property. 358

C.6.6 Section 17.5.2.1 Fixed table layout. 358

C.6.7 Section 17.5.3 Table heightlayout 358

C.6.8 Appendix G. Grammarof CSS 2.1 358

C.7 Errata since the Candidate Recommendation of September 2009.............. 359
C.7.1Section1.4.21Value e 359

C.7.2 Section 3.1 Definitions 359

C.7.3 Section 4.1.1 Tokenization 359

C.7.4 Section4.1.1 Tokenization 359

C.7.5 Section4.1.1 Tokenization 360

C.7.6 Section 4.1.1 Tokenization 360

C.7.7 Section 4.1.2.2 Informative Historical Notes. 360

C.7.8 Section 4.1.3 Charactersand case. 360

C.7.9 Section 4.1.3 Charactersand case. 360

C.7.10 Section 4.1.8 Declarations and properties 360

C.7.11 Section 4.2 Rules for handling parsingerrors. 361
C.7128Section4.3.2Lengths. 361

C.713 Section4.3.2Lengths. 361

C.714 Section4.3.4 URLsand URIs. 361
C.7.15Section4.3.4 URLsand URIs. 361

C.7.16 Section 5.8.2 Default attribute values inDTDs. 361

C.7.17 Section 5.11.4 The language pseudo-class::lang 362

C.7.18 Section 5.12 Pseudo-elements. 362

C.7.19 Section 5.12.1 The :first-line pseudo-element 362

C.7.20 Section 5.12.2 The :first-letter pseudo-element 362

C.7.21 Section 6.2 Inheritance. 362

C.7.22 Section 6.4.4 Precedence of non-CSS presentational hints. 363

C.7.23 Section 7.3 Recognized mediatypes 363

C.7.24 Section 8.3.1 Collapsingmargins 363

C.7.25 Section 8.3.1 Collapsingmargins 363

C.7.26 Section 9.2.1 Block-level elements and block boxes 364

C.7.27 Section 9.2.1.1 Anonymous blockboxes 364

C.7.28 Section 9.2.1.1 Anonymous blockboxes 364

— 18 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.7.29 Section 9.2.1.1 Anonymous blockboxes 364
C.7.30 Section 9.2.1.1 Anonymous blockboxes 364
C.7.31 Section 9.2.2 Inline-level elements and inlineboxes 365
C.7.32 Section 9.2.3 Run-in bOXeS. 365
C.7.33 Section 9.2.4 The 'display' property 365
C.7.34 Section 9.2.4 The 'display' property 366
C.7.35 Section 9.3 Positioningschemes 366
C.7.36 Section 9.4 Normal flow 366
C.7.37 Section 9.3.2 Box offsets: 'top', 'right', 'bottom’, 'left'. 367
C.7.38 Section 9.5 Floats. e 367
C.7.39 Section 9.5 Floats. e 368
C.7.40 Section 9.5.2 Controlling flow next to floats: the 'clear' property 368
C.7.41 Section 9.5.2 Controlling flow next to floats: the 'clear' property 368
C.7.42 Section 9.5.2 Controlling flow next to floats: the 'clear' property 368
C.7.43 Section 9.5.2 Controlling flow next to floats: the 'clear' property 369
C.7.44 Section 14.2.1 Background properties i 369
C.7.45 Section 9.9.1 Specifying the stack level: the 'z-index' property 369
C.7.46 Section 9.10 Text direction: the 'direction' and 'unicode-bidi' properties 369
C.7.47 Section 9.10 Text direction: the 'direction' and 'unicode-bidi' properties 370
C.7.48 Section 9.10 Text direction: the 'direction' and 'unicode-bidi' properties 370
C.7.49 Section 10.1 Definition of "containing block" 370
C.7.50 Section 10.2 Content width: the 'width' property. 371
C.7.51 Section 10.2 Content width: the 'width' property. 371
C.7.52 Section 10.2 Content width: the 'width' property. 371
C.7.53 Section 10.5 Content height: the 'height' property 371
C.7.54 Section 10.5 Content height: the 'height' property 371
C.7.55 Section 10.6.7 'Auto’ heights for block formatting contextroots. 372

C.7.56 Section 10.7 Minimum and maximum heights: 'min-height' and 'max-height'. . 372
C.7.57 Section 10.8 Line height calculations: the 'line-height' and 'vertical-align' proper-

S L L 372
C.7.58 Section 10.8 Line height calculations: the 'line-height' and 'vertical-align' proper-

S L L 373
C.7.59 Section 10.8.1 Leading and half-leading 373
C.7.60 Section 10.8.1 Leading and half-leading 374
C.7.61 Section 10.8.1 Leading and half-leading 374
C.7.62 Section 11.1 Overflow and clipping 374
C.7.63 Section 11.1.1 Overflow: the 'overflow' property. 374
C.7.64 Section 11.1.1 Overflow: the 'overflow' property. 374
C.7.65 Section 11.1.1 Overflow: the 'overflow' property. 375
C.7.66 Section 11.1.2 Clipping: the 'clip' property 375
C.7.67 Section 12.5 Lists e 375
C.7.68 Section 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and

list-style' properties 375
C.7.69 Section 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and

list-style' properties 376
C.7.70 Section 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and

list-style' properties 376

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.7.71 Section 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and

list-style' properties 376

E C.7.72 Section 12.5.1 Lists: the 'list-style-type', 'list-style-image', 'list-style-position', and
- list-style' Propertiesot 376
- C.7.73 Section 13.2 Page boxes: the @pagerule. 376
E C.7.74 Section 13.2.2 Page selectors: selecting left, right, and firstpages 377
= C.7.75 Section 13.3.2 Breaks inside elements: 'orphans’, ‘widows'. 377
8 C.7.76 Section 13.3.3 Allowed page breaks 377
§ C.7.77 Section 15.3 Font family: the 'font-family' property. 378
U C.7.78 Section 15.3.1 Generic fontfamilies. 378
m C.7.79 Section 15.6 Font boldness: the 'font-weight' property. 378
3 C.7.80 Section 15.6 Font boldness: the 'font-weight' property. 378
C.7.81 Section 15.7 Font size: the 'font-size' property. 379
C.7.82 Section 16.1 Indentation: the 'text-indent' property. 379
C.7.83 Section 16.1 Indentation: the 'text-indent' property. 379
C.7.84 Section 16.2 Alignment: the 'text-align' property. 379
C.7.85 Section 16.2 Alignment: the 'text-align' property. 380

C.7.86 Section 16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration'
PrOP Y . . ot e 380

C.7.87 Section 16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration'
PrOP Y . . ot 381
C.7.88 Section 16.4 Letter and word spacing: the 'letter-spacing' and 'word-spacing' prop-
IS, L o o 381
C.7.89 Section 16.6 White space: the 'white-space' property 381
C.7.90 Section 16.6.1 The 'white-space' processingmodel. 382
C.7.91 Section 16.6.1 The 'white-space' processingmodel. 382
C.7.92 Section 16.6.1 The 'white-space' processingmodel. 382
C.7.93 Section 17.2 The CSStablemodel. 382
C.7.94 Section 17.2.1 Anonymous tableobjects 383
C.7.95 Section 17.2.1 Anonymous tableobjects 383
C.7.96 Section 17.4 Tables in the visual formattingmodel 383
C.7.97 Section 17.4 Tables in the visual formattingmodel 383
C.7.98 Section 17.5.2.2 Automatictable layout 384
C.7.99 Section 17.5.3 Table height algorithms 384
C.7.100 Section 17.5.4 Horizontal alignmentinacolumn 384
C.7.101 Section B.2 Informative references. L. 385
C.7.102 Section D. Default style sheetfor HTML 4 385
C.7.103 Section E.2 Paintingorder 385
C.7.104 Appendix G Grammarof CSS 2.1 385
C.8 Changes since the working draft of 7 December 2010 385
C.8.18.3.1 Collapsing margins 385
C.8.210.8.1 Leadingand half-leading 385
C.8.310.3 Calculatingwidthsand margins 386
C.8.4 143 Gamma Correction 386
C.8.511.1.2 Clipping: the ‘clip' property. 386
C.8.6 9.4.2 Inline formattingcontexts. 386
C.8.710.3.2 Inline, replaced elements. 386

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.8.8 10.1 Definition of "containing block" 387
C.8.9 13.2.2 Page selectors: selecting left, right, and firstpages 387
C.8.108.3.1 Collapsing margins 387
C.8.11 10.8 Line height calculations: the 'line-height' and 'vertical-align' properties .. 388
C.8.1210.8.1 Leadingand half-leading 388
C.8.13 10.6.1 Inline, non-replaced elements 388
C.8.14 9.5.1 Positioning the float: the 'float' property. 389
C.8.159.2.1.1 Anonymous block boxes. 389
C.8.16 5.12.1 The :first-line pseudo-element. 389
C.8.17 16.6 White space: the 'white-space' property 389
C.8.18 12.5.1 Lists: the 'list-style-type’', 'list-style-image’, 'list-style-position’, and 'list-style'
PrOPEIIES . . o . 390
C.8.19 9.7 Relationships between 'display', 'position', and float'. 390
C.8.209.4.2 Inline formattingcontexts. 390
C.8214.1.9C0oMMENES e 390
C.8.22 12.5.1 Lists: the 'list-style-type’', 'list-style-image’, 'list-style-position’, and 'list-style'
PrOPEIIES . . o . 391
C.8.23 9.5.1 Positioning the float: the 'float' property. 391
C.8.24 9.3 Positioning schemes. i 391
C.8.25 9.10 Text direction: the 'direction' and 'unicode-bidi' properties 392
C.8.26 16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration' proper-

Y e 392
C.8.27 16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration' proper-

Y e 392
C.8.28 10.4 Minimum and maximum widths: 'min-width' and 'max-width' 392
C.8.29 9.3.2 Box offsets: 'top', 'right’, '‘bottom’, 'left' 393
C.8.30 9.2.1.1 Anonymous block boxes. 393
C.8.31 17.4 Tables in the visual formattingmodel 393
C.8.32 11.1.2 Clipping: the 'clip' property. 393
C.8.33 13.2 Page boxes: the @pagerule 394
C.8.344.1.1 Tokenization e 394
C.8.354.2 Rules for handling parsingerrors i .. 395
C.8.36 3.1 Definitions e 395
C.837434URLsandURIS e 395
C.8.38 95 Floats e 395
C.8.39 11.1.1 Overflow: the 'overflow' property 395
C.8.409.2.1.1 Anonymous block boxes. 396
C.8.41 16.2 Alignment: the 'text-align' property 396
C.8.42 905 Floats e 396
C.8.439.4.2 Inline formattingcontexts. 396
C.8.44 512 Pseudo-elements 396
C.845 9 5 Floats e 397
C.846 9.5 Floats e 397

C.8.47 14.2.1 Background properties: 'background-color', 'background-image',
'‘background-repeat’, 'background-attachment’, 'background-position', and 'back-

GroUNd’ . L L 397
C.8.48 9.2.4 The 'display' property. 397

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— Cascading Style Sheets Level 2 Revision 1 (CSS 2.1) Specification —

C.8.496.1.2Computed values. 399
C.8.50 10.3.2 Inline, replaced elements. 399
C.8.51 Section 9.5.2 Controlling flow next to floats: the 'clear' property 400
C.8.52 G.2Lexical scanner 400
C.8.53 Section 9.5.2 Controlling flow next to floats: the 'clear' property 400
C.854 95 Floats e 401
C.8.55 10.6.3 Block-level non-replaced elements in normal flow when 'overflow' com-
putes to 'Visible' 401
Appendix D. Default style sheetforHTML 4. it 402
Appendix E. Elaborate description of Stacking Contexts 404
E. 1 Definitions 404
E.2 Painting order 404
E. 3 NOteS . . . 407
Appendix F. Full property table i, 408
Appendix G. Grammar of CSS 2.1 i i i ittt 420
G Grammar. 420
G.2 Lexical SCanNEr 422
G.3 Comparison of tokenizationin CSS2.1and CSS1.......................... 424
G4 Implementation note 425
Appendix L. IndexX i i et e e e e 426

—22

— 1 About the CSS 2.1 Specification —

1 About the CSS 2.1 Specification

c

(]
£ Contents

2

) 1.1 CSS 2.1 Vs CSS 2 . . 23

E 1.2 Reading the specification. 24

0 1.3 How the specificationisorganized. i 24

@ 1.4 CoNVeNtiONS 25

oc 1.4.1 Document language elements and attributes 25

Y 1.4.2 CSS property definitionso oo 25

< 1.4.21Value. . ..o 25

1.4.2.21nitial 27

1.4.2.3Appliesto 27

1.4.2.4 Inherited 27

1.4.2.5 Percentage values 27

1.4.2.6 Media groupso 27

1.4.2.7 Computed value 27

1.4.3 Shorthand properties 27

1.4.4 Notesand examples 28

1.4.5 Images and long descriptions 28

1.5 Acknowledgments 28

1.1 CSS 2.1 vs CSS 2

The CSS community has gained significant experience with the CSS2 specification since it
became a recommendation in 1998. Errors in the CSS2 specification have subsequently
been corrected via the publication of various errata, but there has not yet been an opportu-
nity for the specification to be changed based on experience gained.

While many of these issues will be addressed by the upcoming CSS3 specifications, the
current state of affairs hinders the implementation and interoperability of CSS2. The
CSS 2.1 specification attempts to address this situation by:

* Maintaining compatibility with those portions of CSS2 that are widely accepted and imple-
mented.

* Incorporating all published CSS2 errata.

* Where implementations overwhelmingly differ from the CSS2 specification, modifying the
specification to be in accordance with generally accepted practice.

* Removing CSS2 features which, by virtue of not having been implemented, have been
rejected by the CSS community. CSS 2.1 aims to reflect what CSS features are reason-
ably widely implemented for HTML and XML languages in general (rather than only for a
particular XML language, or only for HTML).

* Removing CSS2 features that will be obsoleted by CSS3, thus encouraging adoption of
the proposed CSS3 features in their place.

* Adding a (very) small number of new property values, 2% when implementation experi-
ence has shown that they are needed for implementing CSS2.

- 23—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 1 About the CSS 2.1 Specification —

Thus, while it is not the case that a CSS2 style sheet is necessarily forwards-compatible
with CSS 2.1, it is the case that a style sheet restricting itself to CSS 2.1 features is more
likely to find a compliant user agent today and to preserve forwards compatibility in the fu-
ture. While breaking forward compatibility is not desirable, we believe the advantages to the
revisions in CSS 2.1 are worthwhile.

CSS 2.1 is derived from and is intended to replace CSS2. Some parts of CSS2 are un-
changed in CSS 2.1, some parts have been altered, and some parts removed. The re-
moved portions may be used in a future CSS3 specification. Future specs should refer to
CSS 2.1 (unless they need features from CSS2 which have been dropped in CSS 2.1, and
then they should only reference CSS2 for those features, or preferably reference such fea-
ture(s) in the respective CSS3 Module that includes those feature(s)).

1.2 Reading the specification

This section is non-normative.

This specification has been written with two types of readers in mind: CSS authors and
CSS implementors. We hope the specification will provide authors with the tools they need
to write efficient, attractive, and accessible documents, without overexposing them to CSS's
implementation details. Implementors, however, should find all they need to build conform-
ing user agents P-42 The specification begins with a general presentation of CSS and be-
comes more and more technical and specific towards the end. For quick access to informa-
tion, a general table of contents, specific tables of contents at the beginning of each section,
and an index provide easy navigation, in both the electronic and printed versions.

The specification has been written with two modes of presentation in mind: electronic and
printed. Although the two presentations will no doubt be similar, readers will find some dif-
ferences. For example, links will not work in the printed version (obviously), and page num-
bers will not appear in the electronic version. In case of a discrepancy, the electronic ver-
sion is considered the authoritative version of the document.

1.3 How the specification is organized

This section is non-normative.
The specification is organized into the following sections:

Section 2: An introduction to CSS 2.1
The introduction includes a brief tutorial on CSS 2.1 and a discussion of design princi-
ples behind CSS 2.1.

Sections 3 - 18: CSS 2.1 reference manual.
The bulk of the reference manual consists of the CSS 2.1 language reference. This ref-
erence defines what may go into a CSS 2.1 style sheet (syntax, properties, property
values) and how user agents must interpret these style sheets in order to claim confor-
manceP 42,

Appendixes:
Appendixes contain information about aural properties p.264 (non-normative), a sample
style sheet for HTML 4P4%2) changes from CSS2P-28 the grammar of CSS 2.174%0 a
list of normative and informative references® 222, and two indexes: one for proper-

tiesP % and one general index %%,

—24—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
2

— 1 About the CSS 2.1 Specification —

1.4 Conventions

1.4.1 Document language P-39 elements and attributes
» CSS property and pseudo-class names are delimited by single quotes.
» CSS values are delimited by single quotes.

+ Document language attribute names are in lowercase letters and delimited by double
quotes.

1.4.2 CSS property definitions

Each CSS property definition begins with a summary of key information that resembles the
following:

‘property-name’

Value: legal values & syntax

Initial: initial value

Applies to: elements this property applies to

Inherited: whether the property is inherited
Percentages: how percentage values are interpreted
Media: which media groups the property applies to

Computed value: how to compute the computed value
1.4.2.1 Value

This part specifies the set of valid values for the property whose name is 'property-
name'® 2, A property value can have one or more components. Component value types
are designated in several ways:

1. keyword values (e.g., auto, disc, etc.)

2. basic data types, which appear between "<" and ">" (e.g., <length>, <percentage>,
etc.). In the electronic version of the document, each instance of a basic data type links
to its definition.

3. types that have the same range of values as a property bearing the same name (e.g.,
<'border-width'> <'background-attachment'>, etc.). In this case, the type name is the
property name (complete with quotes) between "<" and ">" (e.g., <'border-width'>).
Such a type does not include the value 'inherit'. In the electronic version of the docu-
ment, each instance of this type of non-terminal links to the corresponding property def-
inition.

4. non-terminals that do not share the same name as a property. In this case, the non-
terminal name appears between "<" and ">", as in <border-width>. Notice the distinc-
tion between <border-width> and <'border-width'>; the latter is defined in terms of the
former. The definition of a non-terminal is located near its first appearance in the speci-
fication. In the electronic version of the document, each instance of this type of value
links to the corresponding value definition.

25

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 1 About the CSS 2.1 Specification —

Other words in these definitions are keywords that must appear literally, without quotes
(e.g., red). The slash (/) and the comma (,) must also appear literally.
Component values may be arranged into property values as follows:

» Several juxtaposed words mean that all of them must occur, in the given order.

* A bar (|) separates two or more alternatives: exactly one of them must occur.

* A double bar (||) separates two or more options: one or more of them must occur, in any
order.

* A double ampersand (&&) separates two or more components, all of which must occur, in
any order.

» Brackets ([]) are for grouping.

Juxtaposition is stronger than the double ampersand, the double ampersand is stronger
than the double bar, and the double bar is stronger than the bar. Thus, the following lines
are equivalent:

d &&
[d && [

ab c || e f
[ab]l | [c | e f

111

Every type, keyword, or bracketed group may be followed by one of the following modifiers:

» An asterisk (*) indicates that the preceding type, word, or group occurs zero or more
times.

* A plus (+) indicates that the preceding type, word, or group occurs one or more times.

» A question mark (?) indicates that the preceding type, word, or group is optional.

» A pair of numbers in curly braces ({A,B}) indicates that the preceding type, word, or group
occurs at least A and at most B times.

The following examples illustrate different value types:

Value: N | NW | NE
Value: [<length> | thick | thin]{1,4}
Value: [<family-name> ,]* <family-name>
Value: <uri>? <color> [/ <color>]?
Value: <uri> || <color>
Value: inset? && [<length>{2,4} && <color>?]

Component values are specified in terms of tokens, as described in Appendix G.2P 422,
As the grammar allows spaces between tokens in the components of the expr production,
spaces may appear between tokens in property values.

Note: In many cases, spaces will in fact be required between tokens in order to dis-
tinguish them from each other. For example, the value '"lTem2em' would be parsed as a
single DIMEN token with the number '1' and the identifier 'em2em’, which is an invalid
unit. In this case, a space would be required before the '2' to get this parsed as the two
lengths "1lem' and '2em’'.

—26 —

— 1 About the CSS 2.1 Specification —

1.4.2.2 Initial

This part specifies the property's initial value. Please consult the section on the cascade P87
for information about the interaction between style sheet-specified, inherited, and initial
property values.

1.4.2.3 Applies to
This part lists the elements to which the property applies. All elements are considered to

have all properties, but some proPerties have no rendering effect on some types of ele-
ments. For example, the 'clear'? 31 property only affects block-level elements.

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

1.4.2.4 Inherited

This part indicates whether the value of the property is inherited from an ancestor element.
Please consult the section on the cascade 8’ for information about the interaction between
style sheet-specified, inherited, and initial property values.

1.4.2.5 Percentage values

This part indicates how percentages should be interpreted, if they occur in the value of the
property. If "N/A" appears here, it means that the property does not accept percentages in
its values.

1.4.2.6 Media groups

This part indicates the media groups P-96 {5 which the property applies. Information about
media groups is non-normative.

1.4.2.7 Computed value

This part describes the computed value for the property. See the section on computed val-
uesP 88 for how this definition is used.

1.4.3 Shorthand properties

Some properties are shorthand properties, meaning that they allow authors to specify the
values of several properties with a single property.

For instance, the 'font'P-221 property is a shorthand property for setting 'font-style
'font-variant' P26, *font-weight' P2!", ‘font-size'2'°, 'line-height' %%, and 'font-family
all at once.

When values are omitted from a shorthand form, each "missing" property is assigned its
initial value (see the section on the cascadep'87).

The multiple style rules of this example:

'p.216
'p.212

_27—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 1 About the CSS 2.1 Specification —

hl {
font-weight: bold;
font-size: 12pt;
line-height: 1l4pt;
font-family: Helvetica;
font-variant: normal;
font-style: normal;

}
may be rewritten with a single shorthand property:

hl { font: bold 12pt/l4pt Helvetica }

p.216

In this example, 'font-variant' , and 'font—style"o'216 take their initial values.

1.4.4 Notes and examples

All examples that illustrate illegal usage are clearly marked as "ILLEGAL EXAMPLE".
HTML examples lacking DOCTYPE declarations are SGML Text Entities conforming to
the HTML 4.01 Strict DTD [HTML4]P-282, Other HTML examples conform to the DTDs given

in the examples.

All notes are informative only.

Examples and notes are marked within the source HTMLP-38 for the specification and
CSS user agents will render them specially.

1.4.5 Images and long descriptions

Most images in the electronic version of this specification are accompanied by "long de-
scriptions" of what they represent. A link to the long description is denoted by a "[D]" after
the image.

Images and long descriptions are informative only.

1.5 Acknowledgments

This section is non-normative.

CSS 2.1 is based on CSS2. See the acknowledgments section of CSS2 for the people
that contributed to CSS2.

We would like to thank the following people who, through their input and feedback on the
www-style mailing list, have helped us with the creation of this specification: Andrew Clover,
Bernd Mielke, C. Bottelier, Christian Roth, Christoph Paper, Claus Farber, Coises, Craig
Saila, Darren Ferguson, Dylan Schiemann, Etan Wexler, George Lund, James Craig, Jan
Eirik Olufsen, Jan Roland Eriksson, Joris Huizer, Joshua Prowse, Kai Lahmann, Kevin
Smith, Lachlan Cannon, Lars Knoll, Lauri Raittila, Mark Gallagher, Michael Day, Peter
Sheerin, Rijk van Geijtenbeek, Robin Berjon, Scott Montgomery, Shelby Moore, Stuart Bal-
lard, Tom Gilder, Vadim Plessky, Peter Moulder, Anton Prowse, Gérard Talbot, Ingo Chao,
Bruno Fassino, Justin Rogers, Boris Zbarsky, Garrett Smith, Zack Weinberg, Bjoern
Hoehrmann, and the Open eBook Publication Structure Working Group Editors. We would

_28—

http://www.w3.org/TR/2008/REC-CSS2-20080411/about.html#q15

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 1 About the CSS 2.1 Specification —

also like to thank Gary Schnabl, Glenn Adams and Susan Lesch who helped proofread ear-
lier versions of this document.

In addition, we would like to extend special thanks to Elika J. Etemad, Ada Chan and
Boris Zbarsky who have contributed significant time to CSS 2.1, and to Kimberly Blessing
for help with the editing.

Many thanks also to the following people for their help with the test suite: Robert Stam,
Aharon Lanin, Alan Gresley, Alan Harder, Alexander Dawson, Arron Eicholz, Bernd Mielke,
Bert Bos, Boris Zbarsky, Bruno Fassino, Daniel Schattenkirchner, David Hammond, David
Hyatt, Eira Monstad, Elika J. Etemad, Gérard Talbot, Gabriele Romanato, Germain Garand,
Hilbrand Edskes, lan Hickson, James Hopkins, Justin Boss, L. David Baron, Lachlan Hunt,
Magne Andersson, Marc Pacheco, Mark McKenzie-Bell, Matt Bradley, Melinda Grant,
Michael Turnwall, Ray Kiddy, Richard Ishida, Robert O'Callahan, Simon Montagu, Tom
Clancy, Vasil Dinkov, ... and all the contributors to the CSS1 test suite.

Working Group members active during the development of this specification: César Ace-
bal (Universidad de Oviedo), Tab Atkins Jr. (Google, Inc.), L. David Baron (Mozilla Founda-
tion), Bert Bos (W3C/ERCIM), Tantek Celik (W3C Invited Experts), Cathy Chan (Nokia),
Giorgi Chavchanidze (Opera Software), John Daggett (Mozilla Foundation), Beth Dakin
(Apple, Inc.), Arron Eicholz (Microsoft Corp.), Elika J. Etemad (W3C Invited Experts), Simon
Fraser (Apple, Inc.), Sylvain Galineau (Microsoft Corp.), Daniel Glazman (Disruptive Inno-
vations), Molly Holzschlag (Opera Software), David Hyatt (Apple, Inc.), Richard Ishida
(W3C/ERCIM), John Jansen (Microsoft Corp.), Brad Kemper (W3C Invited Experts), Hakon
Wium Lie (Opera Software), Chris Lilley (W3C/ERCIM), Peter Linss (HP), Markus Mielke
(Microsoft Corp.), Alex Mogilevsky (Microsoft Corp.), David Singer (Apple Inc.), Anne van
Kesteren (Opera Software), Steve Zilles (Adobe Systems Inc.), lan Hickson (Google, Inc.),
Melinda Grant (HP), Dyvind Stenhaug (Opera Software), and Paul Nelson (Microsoft
Corp.).

—29_

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 2 Introduction to CSS 2.1 —

2 Introduction to CSS 2.1

Contents

2.1 Abrief CSS 2.1 tutorial for HTML. L 30

2.2 Abrief CSS 2.1 tutorial for XML 32

23 The CSS 2.1 processingmodel 34
231 The canvas 35
23.2CSS 21 addressingmodel 35

24 CSSdesignprinciples 35

2.1 A brief CSS 2.1 tutorial for HTML

This section is non-normative.

In this tutorial, we show how easy it can be to design simple style sheets. For this tutorial,
you will need to know a little HTML (see [HTML4]P-?®2) and some basic desktop publishing
terminology.

We begin with a small HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach's home page</TITLE>
</HEAD>
<BODY>
<H1>Bach's home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

To set the text color of the H1 elements to red, you can write the following CSS rules:

hl { color: red }

A CSS rule consists of two main parts: selectorP 87 ('n1") and declaration (‘color: red'). In
HTML, element names are case-insensitive so 'h1' works just as well as 'H1'. The declara-
tion has two parts: property name (‘color') and property value ('red'). While the example
above ftries to influence only one of the properties needed for rendering an HTML docu-
ment, it qualifies as a style sheet on its own. Combined with other style sheets (one funda-
mental feature of CSS is that style sheets are combined), the rule will determine the final
presentation of the document.

The HTML 4 specification defines how style sheet rules may be specified for HTML docu-
ments: either within the HTML document, or via an external style sheet. To put the style
sheet into the document, use the STYLE element:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>
<HEAD>

—30-—

— 2 Introduction to CSS 2.1 —

<TITLE>Bach's home page</TITLE>
<STYLE type="text/css">
hl { color: red }
</STYLE>
</HEAD>
<BODY>
<H1>Bach's home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

For maximum flexibility, we recommend that authors specify external style sheets; they may
be changed without modifying the source HTML document, and they may be shared among
several documents. To link to an external style sheet, you can use the LINK element:

c
3
I
o
c
@
£
E
(o]
O
@
o’
9
g;

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach's home page</TITLE>
<LINK rel="stylesheet" href="bach.css" type="text/css">
</HEAD>
<BODY>
<H1>Bach's home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

The LINK element specifies:

+ the type of link: to a "stylesheet".
« the location of the style sheet via the "href" attribute.
+ the type of style sheet being linked: "text/css".

To show the close relationship between a style sheet and the structured markup, we contin-
ue to use the STYLE element in this tutorial. Let's add more colors:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach's home page</TITLE>
<STYLE type="text/css">
body { color: black; background: white }
hl { color: red; background: white }
</STYLE>
</HEAD>
<BODY>
<H1>Bach's home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

—-31 -

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 2 Introduction to CSS 2.1 —

The style sheet now contains four rules: the first two set the color and background of the
BODY element (it's a good idea to set the text color and background color together), while
the last two set the color and the background of the H1 element. Since no color has been
specified for the P element, it will inherit the color from its parent element, namely BODY.
The H1 element is also a child element of BODY but the second rule overrides the inherited
value. In CSS there are often such conflicts between different values, and this specification
describes how to resolve them.

CSS 2.1 has more than 90 properties, including 'color'”2%4_ Let's look at some of the oth-
ers:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Bach's home page</TITLE>
<STYLE type="text/css">
body {
font-family: "Gill Sans", sans-serif;
font-size: 12pt;
margin: 3em;
}
</STYLE>
</HEAD>
<BODY>
<H1>Bach's home page</H1>
<P>Johann Sebastian Bach was a prolific composer.
</BODY>
</HTML>

The first thing to notice is that several declarations are grouped within a block enclosed by
curly braces ({...}), and separated by semicolons, though the last declaration may also be
followed by a semicolon.

The first declaration on the BODY element sets the font family to "Gill Sans". If that font is
not available, the user agent (often referred to as a "browser") will use the 'sans-serif' font
family which is one of five generic font families which all users agents know. Child elements
of BODY will inherit the value of the 'font-family""‘212 property.

The second declaration sets the font size of the BODY element to 12 points. The "point"
unit is commonly used in print-based typography to indicate font sizes and other length val-
ues. It's an example of an absolute unit which does not scale relative to the environment.

The third declaration uses a relative unit which scales with regard to its surroundings. The
"em" unit refers to the font size of the element. In this case the result is that the margins
around the BODY element are three times wider than the font size.

2.2 A brief CSS 2.1 tutorial for XML

This section is non-normative.
CSS can be used with any structured document format, for example with applications of
the eXtensible Markup Language [XML1O]p'283. In fact, XML depends more on style sheets

- 32—

— 2 Introduction to CSS 2.1 —

than HTML, since authors can make up their own elements that user agents do not know
how to display.

.E Here is a simple XML fragment:
8
'E <ARTICLE>
] <HEADLINE>Fredrick the Great meets Bach</HEADLINE>
£ <AUTHOR>Johann Nikolaus Forkel</AUTHOR>
g <PARA>
H One evening, Jjust as he was getting his
o <INSTRUMENT>flute</INSTRUMENT> ready and his
(@) musicians were assembled, an officer brought him a list of
m the strangers who had arrived.
3 </PARA>
</ARTICLE>

To display this fragment in a document-like fashion, we must first declare which elements
are inline-level (i.e., do not cause line breaks) and which are block-level (i.e., cause line
breaks).

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }

The first rule declares INSTRUMENT to be inline and the second rule, with its comma-
separated list of selectors, declares all the other elements to be block-level. Element names
in XML are case-sensitive, so a selector written in lowercase (e.g., 'instrument’) is different
from uppercase (e.g., INSTRUMENT").

One way of linking a style sheet to an XML document is to use a processing instruction:

<?xml-stylesheet type="text/css" href="bach.css"?>
<ARTICLE>
<HEADLINE>Fredrick the Great meets Bach</HEADLINE>
<AUTHOR>Johann Nikolaus Forkel</AUTHOR>
<PARA>
One evening, Jjust as he was getting his
<INSTRUMENT>flute</INSTRUMENT> ready and his
musicians were assembled, an officer brought him a list of
the strangers who had arrived.
</PARA>
</ARTICLE>

A visual user agent could format the above example as:

Fredrick the Great meets Bach

Johann Mikolaus Forkel

Cne avaning, Just as he was getling his flute ready and his
musicians were assamblad, an officer brought him a list of
the strangers who had arrived.

- 33—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 2 Introduction to CSS 2.1 —

Notice that the word "flute" remains within the paragraph since it is the content of the in-
line element INSTRUMENT.

Still, the text is not formatted the way you would expect. For example, the headline font
size should be larger than then the rest of the text, and you may want to display the author's
name in italic:

INSTRUMENT { display: inline }
ARTICLE, HEADLINE, AUTHOR, PARA { display: block }
HEADLINE { font-size: 1.3em }
AUTHOR { font-style: italic }
ARTICLE, HEADLINE, AUTHOR, PARA { margin: 0.5em }

A visual user agent could format the above example as:

Fredrick the Great meets Bach
Johann MNkolaus Forkel

Cne evening, just as he was getting his flute ready and his
musiclans were assambled, an officer brought him a list of
the strangers who had arrived.

Adding more rules to the style sheet will allow you to further describe the presentation of
the document.

2.3 The CSS 2.1 processing model

This section up to but not including its subsections is non-normative.

This section presents one possible model of how user agents that support CSS work.
This is only a conceptual model; real implementations may vary.

In this model, a user agent processes a source by going through the following steps:

Parse the source document and create a document tree P 4°,

Identify the target media type p-94,

Retrieve all style sheets associated with the document that are specified for the target

media typeP 9.

4. Annotate every element of the document tree by assigning a single value to every
propertyp'51 that is applicable to the target media typep'94. Properties are assigned val-
ues according to the mechanisms described in the section on cascading and inheri-
tance®?’.

Part of the calculation of values depends on the formatting algorithm appropriate for
the target media type P-94 For example, if the target medium is the screen, user agents
apply the visual formatting model p-112,

5. From the annotated document tree, generate a formatting structure. Often, the format-

ting structure closely resembles the document tree, but it may also differ significantly,

W=

— 34—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 2 Introduction to CSS 2.1 —

notably when authors make use of pseudo-elements and generated content. First, the
formatting structure need not be "tree-shaped" at all -- the nature of the structure de-
pends on the implementation. Second, the formatting structure may contain more or
less information than the document tree. For instance, if an element in the document
tree has a value of 'none' for the 'display'p'116 property, that element will generate noth-
ing in the formatting structure. A list element, on the other hand, may generate more in-
formation in the formatting structure: the list element's content and list style information
(e.g., a bullet image).

Note that the CSS user agent does not alter the document tree during this phase. In
particular, content generated due to style sheets is not fed back to the document lan-
guage processor (e.g., for reparsing).

6. Transfer the formatting structure to the target medium (e.g., print the results, display
them on the screen, render them as speech, etc.).

2.3.1 The canvas

For all media, the term canvas describes "the space where the formatting structure is ren-
dered." The canvas is infinite for each dimension of the space, but rendering generally oc-
curs within a finite region of the canvas, established by the user agent according to the tar-
get medium. For instance, user agents rendering to a screen generally impose a minimum
width and choose an initial width based on the dimensions of the viewportp'”?’. User agents
rendering to a page generally impose width and height constraints. Aural user agents may
impose limits in audio space, but not in time.

2.3.2 CSS 2.1 addressing model

CSS 2.1 selectors® ¢’ and properties allow style sheets to refer to the following parts of a
document or user agent:

» Elements in the document tree and certain relationships between them (see the section
on selectorsP ©7).

+ Attributes of elements in the document tree, and values of those attributes (see the sec-
tion on attribute selectors p'71).

+ Some parts of element content (see the first-line P82 and first-letter 82 pseudo-
elements).

+ Elements of the document tree when they are in a certain state (see the section on
pseudo-classesP ©).

+ Some aspects of the canvasP 3° where the document will be rendered.

- Some system information (see the section on user interface ™2°8).

2.4 CSS design principles

This section is non-normative.
CSS 2.1, as CSS2 and CSS1 before it, is based on a set of design principles:

— 35—

c
o
8
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 2 Introduction to CSS 2.1 —

Forward and backward compatibility. CSS 2.1 user agents will be able to understand
CSS1 style sheets. CSS1 user agents will be able to read CSS 2.1 style sheets and dis-
card parts they do not understand. Also, user agents with no CSS support will be able to
display style-enhanced documents. Of course, the stylistic enhancements made possible
by CSS will not be rendered, but all content will be presented.
Complementary to structured documents. Style sheets complement structured docu-
ments (e.g., HTML and XML applications), providing stylistic information for the marked-
up text. It should be easy to change the style sheet with little or no impact on the markup.
Vendor, platform, and device independence. Style sheets enable documents to remain
vendor, platform, and device independent. Style sheets themselves are also vendor and
platform independent, but CSS 2.1 allows you to target a style sheet for a group of de-
vices (e.g., printers).
Maintainability. By pointing to style sheets from documents, webmasters can simplify
site maintenance and retain consistent look and feel throughout the site. For example, if
the organization's background color changes, only one file needs to be changed.
Simplicity. CSS is a simple style language which is human readable and writable. The
CSS properties are kept independent of each other to the largest extent possible and
there is generally only one way to achieve a certain effect.
Network performance. CSS provides for compact encodings of how to present content.
Compared to images or audio files, which are often used by authors to achieve certain
rendering effects, style sheets most often decrease the content size. Also, fewer network
connections have to be opened which further increases network performance.
Flexibility. CSS can be applied to content in several ways. The key feature is the ability
to cascade style information specified in the default (user agent) style sheet, user style
sheets, linked style sheets, the document head, and in attributes for the elements forming
the document body.
Richness. Providing authors with a rich set of rendering effects increases the richness of
the Web as a medium of expression. Designers have been longing for functionality com-
monly found in desktop publishing and slide-show applications. Some of the requested
rendering effects conflict with device independence, but CSS 2.1 goes a long way toward
granting designers their requests.
Alternative language bindings. The set of CSS properties described in this specification
form a consistent formatting model for visual and aural presentations. This formatting
model can be accessed through the CSS language, but bindings to other languages are
also possible. For example, a JavaScript program may dynamically change the value of a
certain element's 'color' P-2%4 property.
Accessibility. Several CSS features will make the Web more accessible to users with
disabilities:
> Properties to control font appearance allow authors to eliminate inaccessible bit-
mapped text images.
o Positioning properties allow authors to eliminate mark-up tricks (e.g., invisible images)
to force layout.
> The semantics of ! important rules mean that users with particular presentation re-
quirements can override the author's style sheets.
o The 'inherit' value for all properties improves cascading generality and allows for easier
and more consistent style tuning.

— 36 —

— 2 Introduction to CSS 2.1 —

> Improved media support, including media groups and the braille, embossed, and tty
media types, will allow users and authors to tailor pages to those devices.

Note. For more information about designing accessible documents using CSS and
HTML, see [[-'WCAG20]].

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
gz

_37—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 3 Conformance: Requirements and Recommendations —

3 Conformance: Requirements and
Recommendations

Contents

3.1 DefinitioNns. 38
3. 2UA Conformanceo e, 42
3.3 Error conditions e 43
3.4 Thetext/css contenttype 43

3.1 Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 (see [RFC21 19]p'283). However, for readability, these
words do not appear in all uppercase letters in this specification.

At times, this specification recommends good practice for authors and user agents.
These recommendations are not normative and conformance with this specification does
not depend on their realization. These recommendations contain the expression "We rec-
ommend ...", "This specification recommends ...", or some similar wording.

The fact that a feature is marked as deprecated (namely the ‘aural'P-2° keyword) or go-
ing to be deprecated in CSS3 (namely the system colors IO'259) also has no influence on con-
formance. (For example, 'aural' is marked as non-normative, so UAs do not need to support
it; the system colors are normative, so UAs must support them.)

All sections of this specification, including appendices, are normative unless otherwise
noted.

Examples and notes P-28 are not normative.

Examples usually have the word "example" near their start ("Example:", "The following
example...," "For example," etc.) and are shown in the color maroon, like this paragraph.

Notes start with the word "Note," are indented and shown in green, like this para-
graph.

Figures are for illustration only. They are not reference renderings, unless explicitly stat-
ed.
Style sheet
A set of statements that specify presentation of a document.

Style sheets may have three different origins: author®*°, user#°, and user
agentP %%, The interaction of these sources is described in the section on cascading
and inheritance %',

Valid style sheet
The validity of a style sheet depends on the level of CSS used for the style sheet. All
valid CSS1 style sheets are valid CSS 2.1 style sheets, but some changes from CSS1
mean that a few CSS1 style sheets will have slightly different semantics in CSS 2.1.

p.40

— 38 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 3 Conformance: Requirements and Recommendations —

Some features in CSS2 are not part of CSS 2.1, so not all CSS2 style sheets are valid
CSS 2.1 style sheets.

A valid CSS 2.1 style sheet must be written according to the grammar of
CSS 2.17420 Furthermore, it must contain only at-rules, property names, and property
values defined in this specification. An illegal (invalid) at-rule, property name, or prop-
erty value is one that is not valid.

Source document
The document to which one or more style sheets apply. This is encoded in some lan-
guage that represents the document as a tree of elements P-39 Each element consists
of a name that identifies the type of element, optionally a number of attributes P-39 and
a (possibly empty) content?%°. For example, the source document could be an XML or
SGML instance.

Document language
The encoding language of the source document (e.g., HTML, XHTML, or SVG). CSS is
used to describe the presentation of document languages and CSS does not change
the underlying semantics of the document languages.

Element
(An SGML term, see [I808879]p'282.) The primary syntactic constructs of the document
language. Most CSS style sheet rules use the names of these elements (such as P,
TABLE, and OL in HTML) to specify how the elements should be rendered.

Replaced element

An element whose content is outside the scope of the CSS formatting model, such as
an image, embedded document, or applet. For example, the content of the HTML IMG
element is often replaced by the image that its "src" attribute designates. Replaced ele-
ments often have intrinsic dimensions: an intrinsic width, an intrinsic height, and an in-
trinsic ratio. For example, a bitmap image has an intrinsic width and an intrinsic height
specified in absolute units (from which the intrinsic ratio can obviously be determined).
On the other hand, other documents may not have any intrinsic dimensions (for exam-
ple, a blank HTML document).

User agents may consider a replaced element to not have any intrinsic dimensions if
it is believed that those dimensions could leak sensitive information to a third party. For
example, if an HTML document changed intrinsic size depending on the user's bank
balance, then the UA might want to act as if that resource had no intrinsic dimensions.

The content of replaced elements is not considered in the CSS rendering model.

Intrinsic dimensions
The width and height as defined by the element itself, not imposed by the surroundings.
CSS does not define how the intrinsic dimensions are found. In CSS 2.1 only replaced
elements can come with intrinsic dimensions. For raster images without reliable resolu-
tion information, a size of 1 px unit per image source pixel must be assumed.

Attribute
A value associated with an element, consisting of a name, and an associated (textual)
value.

Content
The content associated with an element in the source document. Some elements have
no content, in which case they are called empty. The content of an element may in-
clude text, and it may include a number of sub-elements, in which case the element is
called the parent of those sub-elements.

—39_

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 3 Conformance: Requirements and Recommendations —

Ignore
This term has two slightly different meanings in this specification. First, a CSS parser
must follow certain rules when it discovers unknown or illegal syntax in a style sheet.
The parser must then ignore certain parts of the style sheets. The exact rules for which
parts must be ignored are described in these sections (Declarations and properties,p'51
Rules for handling parsing errors, P23 Unsupported Valuesp'62) or may be explained in
the text where the term "ignore" appears. Second, a user agent may (and, in some cas-
es must) disregard certain properties or values in the style sheet, even if the syntax is
legal. For example, table-column elements cannot affect the font of the column, so the
font properties must be ignored.

Rendered content
The content of an element after the rendering that applies to it according to the relevant
style sheets has been applied. How a replaced element's content is rendered is not de-
fined by this specification. Rendered content may also be alternate text for an element
(e.g., the value of the XHTML "alt" attribute), and may include items inserted implicitly
or explicitly by the style sheet, such as bullets, numbering, etc.

Document tree
The tree of elements encoded in the source document. Each element in this tree has
exactly one parent, with the exception of the root element, which has none.

Child
An element A is called the child of element B if and only if B is the parent of A.

Descendant
An element A is called a descendant of an element B, if either (1) A is a child of B, or
(2) A is the child of some element C that is a descendant of B.

Ancestor
An element A is called an ancestor of an element B, if and only if B is a descendant of
A.

Sibling
An element A is called a sibling of an element B, if and only if B and A share the same
parent element. Element A is a preceding sibling if it comes before B in the document
tree. Element B is a following sibling if it comes after A in the document tree.

Preceding element
An element A is called a preceding element of an element B, if and only if (1) Ais an
ancestor of B or (2) A is a preceding sibling of B.

Following element
An element A is called a following element of an element B, if and only if B is a preced-
ing element of A.

Author
An author is a person who writes documents and associated style sheets. An author-
ing tool is a User Agent'“"40 that generates style sheets.

User
A user is a person who interacts with a user agent to view, hear, or otherwise use a
document and its associated style sheet. The user may provide a personal style sheet
that encodes personal preferences.

User agent (UA)
A user agent is any program that interprets a document written in the document lan-
guage and applies associated style sheets according to the terms of this specification.

— 40—

— 3 Conformance: Requirements and Recommendations —

A user agent may display a document, read it aloud, cause it to be printed, convert it to
another format, etc.
An HTML user agent is one that supports one or more of the HTML specifications. A
user agent that supports XHTML [XHTML]p'284, but not HTML is not considered an
HTML user agent for the purpose of conformance with this specification.

Property
CSS defines a finite set of parameters, called properties, that direct the rendering of a
document. Each property has a name (e.g., 'color', 'font', or border') and a value (e.g.,
'red’, "12pt Times', or 'dotted’). Properties are attached to various parts of the document
and to the page on which the document is to be displayed by the mechanisms of speci-
ficity, cascading, and inheritance (see the chapter on Assigning property values, Cas-
cading, and Inheritancep'87).

Here is an example of a source document written in HTML.:

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<TITLE>My home page</TITLE>
<BODY>
<H1>My home page</H1>
<P>Welcome to my home page! Let me tell you about my favorite
composers:

 Elvis Costello
 Johannes Brahms
 Georges Brassens

</BODY>
</HTML>

This results in the following tree:

HTML

HEAD " BODY
| |--.

TITLE HooP L

bbb

According to the definition of HTML 4, HEAD elements will be inferred during parsing and
become part of the document tree even if the "head" tags are not in the document source.
Similarly, the parser knows where the P and LI elements end, even though there are no
</p> and tags in the source.

Documents written in XHTML (and other XML-based languages) behave differently: there
are no inferred elements and all elements must have end tags.

—4] —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 3 Conformance: Requirements and Recommendations —

3.2 UA Conformance

This section defines conformance with the CSS 2.1 specification only. There may be other
levels of CSS in the future that may require a user agent to implement a different set of fea-
tures in order to conform.

In general, the following points must be observed by a user agent claiming conformance
to this specification:

1. It must recognize one or more of the CSS 2.1 media types P94

2. For each source document, it must attempt to retrieve all associated style sheets that
are appropriate for the recognized media types. If it cannot retrieve all associated style
sheets (for instance, because of network errors), it must display the document using
those it can retrieve.

3. It must parse the style sheets according to this specification. In particular, it must rec-
ognize all at-rules, blocks, declarations, and selectors (see the grammar of
CSS 21 p'420). If a user agent encounters a property that applies for a supported media
type, the user agent must parse the value according to the property definition. This
means that the user agent must accept all valid values and must ignore declarations
with invalid values. User agents must ignore rules that apply to unsupported media
typesP ",

4. For each element in a document tree® %, it must assign a value for every property ac-
cording to the property's definition and the rules of cascading and inheritance P87,

5. If the source document comes with alternate style sheet sets (such as with the "alter-
nate" keyword in HTML 4 [HTML4]P-282), the UA must allow the user to select which
style sheet set the UA should apply.

6. The UA must allow the user to turn off the influence of author style sheets.

Not every user agent must observe every point, however:

» An application that reads style sheets without rendering any content (e.g., a CSS 2.1 val-
idator) must respect points 1-3.

» An authoring tool is only required to output valid style sheets

* A user agent that renders a document with associated style sheets must respect points
1-6 and render the document according to the media-specific requirements set forth in
this specification. Values .88 may be approximated when required by the user agent.

p.38

The inability of a user agent to implement part of this specification due to the limitations of a
particular device (e.g., a user agent cannot render colors on a monochrome monitor or
page) does not imply non-conformance.

UAs must allow users to specify a file that contains the user style sheet. UAs that run on
devices without any means of writing or specifying files are exempted from this requirement.
Additionally, UAs may offer other means to specify user preferences, for example, through
a GUI.

CSS 2.1 does not define which properties apply to form controls and frames, or how CSS
can be used to style them. User agents may apply CSS properties to these elements. Au-

— 40 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 3 Conformance: Requirements and Recommendations —

thors are recommended to treat such support as experimental. A future level of CSS may
specify this further.

3.3 Error conditions

In general, this document specifies error handling behavior throughout the specification. For
example, see the rules for handling parsing errors® 53,

3.4 The text/css content type

CSS style sheets that exist in separate files are sent over the Internet as a sequence of
bytes accompanied by encoding information. The structure of the transmission, termed a
message entity, is defined by RFC 2045 and RFC 2616 (see [RFC2045]P-282 and
[RFCZ616]p'28). A message entity with a content type of "text/css" represents an indepen-
dent CSS document. The "text/css" content type has been registered by RFC 2318
([RFC2318]P-283),

—43 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

4 Syntax and basic data types

Contents
4 SYNEaX . . e 44
4. 1.1 Tokenization 44
4.2 KEYWOIAS . . . ottt 47
4.1.2.1 Vendor-specific extensions 47
4.1.2.2 Informative Historical Notes 48
41.3Characters and Caset 48
414 Statements. 49
41,5 AtrUleS . .o 50
4.1.6BIOCKS 50
4.1.7 Rule sets, declaration blocks, and selectors 51
4.1.8 Declarations and properties. 51
4.1.9 CommeENtS 52
4.2 Rules for handling parsing errors 53
4.3 Values 55
4.3.1Integersand real numbers. 55
4.3.2Lengths 55
4.3.3 Percentages. 58
434 URLsand URIs 59
4.3.5 CoUNtErS . ..o 60
4.3.6 COlOrs 60
4.3.7 SHINGS . . e 62
4.3.8Unsupported Values 62
4.4 CSS style sheetrepresentation 62
4.4.1 Referring to characters not represented in a character encoding 65

4.1 Syntax

This section describes a grammar (and forward-compatible parsing rules) common to any
level of CSS (including CSS 2.1). Future updates of CSS will adhere to this core syntax, al-
though they may add additional syntactic constraints.

These descriptions are normative. They are also complemented by the normative gram-
mar rules presented in Appendix GP420,

In this specification, the expressions "immediately before" or "immediately after" mean
with no intervening white space or comments.

4.1.1 Tokenization
All levels of CSS — level 1, level 2, and any future levels — use the same core syntax. This

allows UAs to parse (though not completely understand) style sheets written in levels of
CSS that did not exist at the time the UAs were created. Designers can use this feature to

—44 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

create style sheets that work with older user agents, while also exercising the possibilities of
the latest levels of CSS.

At the lexical level, CSS style sheets consist of a sequence of tokens. The list of tokens
for CSS is as follows. The definitions use Lex-style regular expressions. Octal codes refer
to ISO 10646 ([ISO10646]p'282). As in Lex, in case of multiple matches, the longest match
determines the token.

Token Definition
IDENT {ident}
ATKEYWORD @{ident}
STRING {string}
BAD STRING ({badstring}
BAD_ URI {baduri}
BAD_COMMENT {badcomment }
HASH #{name}
NUMBER {num}

PERCENTAGE {num}%
DIMENSION {num} {ident}
url\ ({w}{string}{w}\)

URI lurl\ ({w} (['#S%&*-\[\]-~]|{nonascii}|{escape})*{w}\)
gx:\]CGOEDE- u\+[0-9a-f?]{1,6} (-[0-%9a-f]{1,6})"?

CDO <l--

CDC -—>

{ \ {

} \ '}

(\ (

) \)

[\ [

] \1]

S [\t\r\n\f]+

COMMENT N/NFAX]HAN*E ([N X [A*]FNF+) *\/

FUNCTION {ident}\ (

INCLUDES ~=

DASHMATCH |=

DELIM any other character not matched by the above rules, and neither a single

nor a double quote
The macros in curly braces ({}) above are defined as follows:
Macro Definition

ident [-]?{nmstart} {nmchar}*

— 45—

— 4 Syntax and basic data types —

Macro Definition

c name {nmchar}+

.g nmstart [a-z]|{nonascii} | {escape}

-:-; nonascii [*\0-\237]

o unicode N\ [0-9a-f]{1,6} (\r\n|[\n\r\t\f])?

E escape {unicode} |\\ [*"\n\r\f0-9a-£f]

8 nmchar [@a-z0-9-]1]|{nonascii} | {escape}

o num [0-9]+][0-9]*\.[0-9]+

H string {stringl}|{string2}

3 string1 A" (IA\RNENENN"]T [\\{nl} | {escape}) *\"
string2 N CIPADNCNENN"T [N\ {nl} | {escape}) *\'
badstring {badstringl} | {badstring2}

badstring1 A" (AN NENN"T [N\ {nl} | {escape}) *\\?
badstring2 \' (["\n\r\£\\"] [\\{nl} | {escape}) *\\?
badcomment {badcommentl} | {badcomment?2}
badcommentT \ /* [**] **+ ([~/*] ["*] **+) *
badcomment2\ /* [**]* (*+[~/*] [**]*)*

baduri {baduril} | {baduri2} | {baduri3}

baduri1 url\ ({w} (['#$%&*-~] | {nonascii} | {escape}) *{w}
baduri2 url\ ({w}{string} {w}

baduri3 url\ ({w} {badstring}

nl \n[\r\n|\r|\£f

w [\t\r\n\f]~*

For example, the rule of the longest match means that "red-->" is tokenized as the
IDENT "red--" followed by the DELIM ">", rather than as an IDENT followed by a CDC.

Below is the core syntax for CSS. The sections that follow describe how to use it. Appen-
dix GP-*20 describes a more restrictive grammar that is closer to the CSS level 2 language.
Parts of style sheets that can be parsed according to this grammar but not according to the
grammar in Appendix G are among the parts that will be ignored according to the rules for
handling parsing errors®- %3,

stylesheet : [CDO | CDC | S | statement]%*;
statement : ruleset | at-rule;
at-rule : ATKEYWORD S* any* [block | ';' S*];
block : '"{'" S* [any | block | ATKEYWORD S* | ';' S*]* '}' S5S*;
ruleset : selector? '{' S* declaration? [';' S* declaration?]* '}' S*;
selector :anyt;
declaration : property S* ':' S* wvalue;
property : IDENT;
value : [any | block | ATKEYWORD S*]+;
any : [IDENT | NUMBER | PERCENTAGE | DIMENSION | STRING
| DELIM | URI | HASH | UNICODE-RANGE | INCLUDES
| DASHMATCH | ':' | FUNCTION S* [any|unused]* ')'
| '(' S* [any|unused]* ")' | '[' S* [any|unused]* ']'

— 46 —

c
3
I
o
c
@
£
E
(o]
O
@
o’
9
g;

— 4 Syntax and basic data types —

] S*;
unused : block | ATKEYWORD S* | ';' S* | CDO S* | CDC S*;

The "unused" production is not used in CSS and will not be used by any future extension. It
is inclu%gd here only to help with error handling. (See 4.2 "Rules for handling parsing er-
rors."P->°)

COMMENT tokens do not occur in the grammar (to keep it readable), but any number of
these tokens may appear anywhere outside other tokens. (Note, however, that a comment
before or within the @charset rule disables the @charset.)

The token S in the grammar above stands for white space. Only the characters "space"
(U+0020), "tab" (U+0009), "line feed" (U+000A), "carriage return" (U+000D), and "form
feed" (U+000C) can occur in white space. Other space-like characters, such as "em-space"
(U+2003) and "ideographic space" (U+3000), are never part of white space.

The meaning of input that cannot be tokenized or parsed is undefined in CSS 2.1.

4.1.2 Keywords

Keywords have the form of identifiers. .48 Keywords must not be placed between quotes
(".." or"..."). Thus,

red

is a keyword, but

" red"

p.62

is not. (Itis a string™ °“.) Other illegal examples:

width: "auto";
border: "none™;
background: "red";

4.1.2.1 Vendor-specific extensions

In CSS, identifiers may begin with '-' (dash) or' ' (underscore). Keywords and property
namesP-®' beginning with - or' "are reserved for vendor-specific extensions. Such
vendor-specific extensions should have one of the following formats:

'-' + vendor identifier + '-' + meaningful name
' ' 4+ vendor identifier + '-' + meaningful name

For example, if XYZ organization added a property to describe the color of the border on
the East side of the display, they might call it -xyz-border-east-color.
Other known examples:

-moz-box-sizing

-moz-border-radius
-wap-accesskey

_ 47—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

An initial dash or underscore is guaranteed never to be used in a property or keyword by
any current or future level of CSS. Thus typical CSS implementations may not recognize
such properties and may ignore them according to the rules for handling parsing errors P-53,
However, because the initial dash or underscore is part of the grammar, CSS 2.1 imple-
menters should always be able to use a CSS-conforming parser, whether or not they sup-
port any vendor-specific extensions.

Authors should avoid vendor-specific extensions

4.1.2.2 Informative Historical Notes

This section is informative.
At the time of writing, the following prefixes are known to exist:

| prefix H organization

[-ms-, mso-|Microsoft

Fmoz- |Mozilla

l-o-, -xv- |Opera Software

|—atsc— HAdvanced Television Standards Committee
-wap- [The WAP Forum

|
|
|
|
I
[Fxntm1- ||KDE |
-webkit- |Apple |
|
|
|
|
|
|

|prince— HYeSLogiC

-ah- IAntenna House
-hp- [Hewlett Packard
-ro- Real Objects
Frim- |[Research In Motion
-tc- [TallComponents

4.1.3 Characters and case
The following rules always hold:

» All CSS syntax is case-insensitive within the ASCII range (i.e., [a-z] and [A-Z] are equiva-
lent), except for parts that are not under the control of CSS. For example, the case-
sensitivity of values of the HTML attributes "id" and "class", of font names, and of URIs
lies outside the scope of this specification. Note in particular that element names are
case-insensitive in HTML, but case-sensitive in XML.

* In CSS, identifiers (including element names, classes, and IDs in selectorsp'67) can con-
tain only the characters [a-zA-Z0-9] and ISO 10646 characters U+00AO and higher, plus
the hyphen (-) and the underscore (_); they cannot start with a digit, two hyphens, or a
hyphen followed by a digit. Identifiers can also contain escaped characters and any ISO
10646 character as a numeric code (see next item). For instance, the identifier "B&W?"
may be written as "B\&W\?" or "B\26 W\3F".

—48 —

— 4 Syntax and basic data types —

Note that Unicode is code-by-code equivalent to ISO 10646 (see [UNICODE]p'283 and
[1ISO10646]P-282),

* In CSS 2.1, a backslash (\) character can indicate one of three types of character escape.
Inside a CSS comment, a backslash stands for itself, and if a backslash is immediately
followed by the end of the style sheet, it also stands for itself (i.e., a DELIM token).

First, inside a string P-62 5 backslash followed by a newline is ignored (i.e., the string is
deemed not to contain either the backslash or the newline). Outside a string, a backslash
followed by a newline stands for itself (i.e., a DELIM followed by a newline).

Second, it cancels the meaning of special CSS characters. Any character (except a
hexadecimal digit, linefeed, carriage return, or form feed) can be escaped with a back-
slash to remove its special meaning. For example, "\ "" is a string consisting of one dou-
ble quote. Style sheet preprocessors must not remove these backslashes from a style
sheet since that would change the style sheet's meaning.

Third, backslash escapes allow authors to refer to characters they cannot easily put in
a document. In this case, the backslash is followed by at most six hexadecimal digits
(0..9A..F), which stand for the ISO 10646 ([ISO10646]P-282) character with that number,
which must not be zero. (It is undefined in CSS 2.1 what happens if a style sheet does
contain a character with Unicode codepoint zero.) If a character in the range [0-9a-fA-F]
follows the hexadecimal number, the end of the number needs to be made clear. There
are two ways to do that:

1. with a space (or other white space character): "\26 B" ("&B"). In this case, user
agents should treat a "CR/LF" pair (U+000D/U+000A) as a single white space char-
acter.

2. by providing exactly 6 hexadecimal digits: "\000026B" ("&B")

In fact, these two methods may be combined. Only one white space character is ignored
after a hexadecimal escape. Note that this means that a "real" space after the escape se-
quence must be doubled.

If the number is outside the range allowed by Unicode (e.g., "\110000" is above the
maximum 10FFFF allowed in current Unicode), the UA may replace the escape with the
"replacement character" (U+FFFD). If the character is to be displayed, the UA should
show a visible symbol, such as a "missing character" glyph (cf. 15.2,P-211 point 5).

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

* Note: Backslash escapes are always considered to be part of an identifier *® or a
string (i.e., "\7B" is not punctuation, even though "{" is, and "\32" is allowed at the
start of a class name, even though "2" is not).

The identifier "te\st" is exactly the same identifier as "test".

4 1.4 Statements

A CSS style sheet, for any level of CSS, consists of a list of statements (see the gram-
marP-** above). There are two kinds of statements: at-rules and rule sets. There may be
white space P-47 around the statements.

—49 _

— 4 Syntax and basic data types —

4.1.5 At-rules
At-rules start with an at-keyword, an '@' character followed immediately by an identifierP 48
(for example, '@import’, '@page").

An at-rule consists of everything up to and including the next semicolon (;) or the next
block, P °° whichever comes first.

CSS 2.1 user agents must ignore p-40 any '@import’ rule that occurs inside a blockP*°
or after any non-ignored statement other than an @charset or an @import rule.

Assume, for example, that a CSS 2.1 parser encounters this style sheet:

p.89

@import "subs.css";
hl { color: blue }
@import "list.css";

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

The second '@import' is illegal according to CSS 2.1. The CSS 2.1 parser ignores P-40 the
whole at-rule, effectively reducing the style sheet to:

@import "subs.css";
hl { color: blue }

In the following example, the second '@import' rule is invalid, since it occurs inside a
'‘@media’ blockP°,

@import "subs.css";
@media print {
@import "print-main.css";
body { font-size: 10pt }
}
hl {color: blue }

Instead, to achieve the effect of only importing a style sheet for 'print' media, use the @im-
port rule with media syntax, e.g.:

@import "subs.css";
@import "print-main.css" print;
@media print {
body { font-size: 10pt }
}
hl {color: blue }

4.1.6 Blocks

A block starts with a left curly brace ({) and ends with the matching right curly brace (}). In
between there may be any tokens, except that parentheses (()), brackets ([]), and braces
({ }) must always occur in matching pairs and may be nested. Single (') and double quotes
(") must also occur in matching pairs, and characters between them are parsed as a string.
See Tokenization?-** above for the definition of a string.

— 50—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

Here is an example of a block. Note that the right brace between the double quotes does
not match the opening brace of the block, and that the second single quote is an escaped
character?#°, and thus does not match the first single quote:

{ causta: "}" + ({7} * '\'") }

Note that the above rule is not valid CSS 2.1, but it is still a block as defined above.

4 .1.7 Rule sets, declaration blocks, and selectors

A rule set (also called "rule") consists of a selector followed by a declaration block.

A declaration block starts with a left curly brace ({) and ends with the matching right curly
brace (}). In between there must be a list of zero or more semicolon-separated (;) declara-
tions.

The selector (see also the section on selectors IO'67) consists of everything up to (but not
including) the first left curly brace ({). A selector always goes together with a declaration
block. When a user agent cannot parse the selector (i.e., it is not valid CSS 2.1), it must ig-
noreP 4° the selector and the following declaration block (if any) as well.

CSS 2.1 gives a special meaning to the comma (,) in selectors. However, since it is not
known if the comma may acquire other meanings in future updates of CSS, the whole state-
ment should be ignored P-40 if there is an error anywhere in the selector, even though the
rest of the selector may look reasonable in CSS 2.1.

For example, since the "&" is not a valid token in a CSS 2.1 selector, a CSS 2.1 user
agent must ignore” #° the whole second line, and not set the color of H3 to red:

hl, h2 {color: green }

h3, h4d & h5 {color: red }
h6 {color: black }

Here is a more complex example. The first two pairs of curly braces are inside a string,
and do not mark the end of the selector. This is a valid CSS 2.1 rule.

plexample="public class foo\

{\
private int x;\
\
foo (int x) {\
this.x = x;\
N\
\
}"] { color: red }

4.1.8 Declarations and properties

A declaration is either empty or consists of a property name, followed by a colon (:), fol-
lowed by a property value. Around each of these there may be white space p-47,

Because of the way selectors work, multiple declarations for the same selector may be
organized into semicolon (;) separated groups.

— 51—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

Thus, the following rules:

hl { font-weight: bold }

hl { font-size: 12px }

hl { line-height: 14px }

hl { font-family: Helvetica }
hl { font-variant: normal }
hl { font-style: normal }

are equivalent to:

hl {
font-weight: bold;
font-size: 12px;
line-height: 14px;
font-family: Helvetica;
font-variant: normal;
font-style: normal

}

A property name is an identifierP- 48, Any token may occur in the property value. Paren-
theses ("()"), brackets ("[]1"), braces ("{ }"), single quotes ('), and double quotes (") must
come in matching pairs, and semicolons not in strings must be escaped P-49 Parentheses,
brackets, and braces may be nested. Inside the quotes, characters are parsed as a string.

The syntax of values is specified separately for each property, but in any case, values are
built from identifiers, strings, numbers, lengths, percentages, URIs, colors, etc.

A user agent must ignore P-40 3 declaration with an invalid property name or an invalid
value. Every CSS property has its own syntactic and semantic restrictions on the values it
accepts.

For example, assume a CSS 2.1 parser encounters this style sheet:

hl { color: red; font-style: 12pt } /* Invalid value: 12pt */

p { color: blue; font-vendor: any; /* Invalid prop.: font-vendor */
font-variant: small-caps }

em em { font-style: normal }

The second declaration on the first line has an invalid value '12pt'. The second declaration
on the second line contains an undefined property 'font-vendor'. The CSS 2.1 parser will ig-
nore® 4 these declarations, effectively reducing the style sheet to:

hl { color: red; }

p { color: blue; font-variant: small-caps }
em em { font-style: normal }

4.1.9 Comments
Comments begin with the characters "/*" and end with the characters "*/". They may occur

anywhere outside other tokens, and their contents have no influence on the rendering.
Comments may not be nested.

52

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

CSS also allows the SGML comment delimiters ("<!--" and "-->") in certain places defined
by the grammar, but they do not delimit CSS comments. They are permitted so that style
rules appearing in an HTML source document (in the STYLE element% may be hidden from
pre-HTML 3.2 user agents. See the HTML 4 specification ([HTML4] 82) for more informa-
tion.

4.2 Rules for handling parsing errors

In some cases, user agents must ignore part of an illegal style sheet. This specification de-
fines ignore to mean that the user agent parses the illegal part (in order to find its beginning
and end), but otherwise acts as if it had not been there. CSS 2.1 reserves for future updates
of CSS all property:value combinations and @-keywords that do not contain an identifier
beginning with dash or underscore. Implementations must ignore such combinations (other
than those introduced by future updates of CSS).

To ensure that new properties and new values for existing properties can be added in the
future, user agents are required to obey the following rules when they encounter the follow-
ing scenarios:

* Unknown properties. User agents must ignore P-40 3 declaration® °! with an unknown
property. For example, if the style sheet is:

hl { color: red; rotation: 70minutes }

the user agent will treat this as if the style sheet had been

hl { color: red }

+ lllegal values. User agents must ignore a declaration with an illegal value. For example:

img { float: left } /* correct CSS 2.1 */

img { float: left here } /* "here" is not a value of 'float' */

img { background: "red" } /* keywords cannot be quoted */

img { border-width: 3 } /* a unit must be specified for length values

A CSS 2.1 parser would honor the first rule and ignore P-40 the rest, as if the style sheet
had been:

img float: left }
img }
img }
img }
A user agent conforming to a future CSS specification may accept one or more of the oth-
er rules as well.
+ Malformed declarations. User agents must handle unexpected tokens encountered
while parsing a declaration by reading until the end of the declaration, while observing the

rules for matching pairs of (), [], {}, "™, and ", and correctly handling escapes. For exam-

— 53—

*/

— 4 Syntax and basic data types —

ple, a malformed declaration may be missing a property name, colon (:), or property val-
ue. The following are all equivalent:

* Malformed statements. User agents must handle unexpected tokens encountered while
parsing a statement by reading until the end of the statement, while observing the rules
for matching pairs of (), [], {}, ", and ", and correctly handling escapes. For example, a
malformed statement may contain an unexpected closing brace or at-keyword. E.g., the
following lines are all ignored:

c

O

'E p { color:green }

o p { color:green; color } /* malformed declaration missing ':', value */
5 p { color:red; color; color:green } /* same with expected recovery */
£ p { color:green; color: } /* malformed declaration missing value */

g p { color:red; color:; color:green } /* same with expected recovery */
o p { color:green; color{;color:maroon} } /* unexpected tokens { } */

SE p { color:red; color{;color:maroon}; color:green } /* same with recovery */
O

2

p @here {color: red} /* ruleset with unexpected at-keyword "@here" */
@foo @bar; /* at-rule with unexpected at-keyword "@bar" */
Y o{{ - }} /* ruleset with unexpected right brace */

) ({}) p {color: red } /* ruleset with unexpected right parenthesis */

* At-rules with unknown at-keywords. User agents must ignorep'40 an invalid at-keyword
together with everything following it, up to the end of the block that contains the invalid at-
keyword, or up to and including the next semicolon (;), or up to and including the next
block ({...}), whichever comes first. For example, consider the following:

@three-dee /{
@background-lighting {
azimuth: 30deg;
elevation: 190deg;

}
hl { color: red }

}
hl { color: blue }

The '@three-dee' at-rule is not part of CSS 2.1. Therefore, the whole at-rule (up to, and
including, the third right curly brace) is ignored. P-40 A CSS 2.1 user agent ignores""40 it,
effectively reducing the style sheet to:

hl { color: blue }

Something inside an at-rule that is ignored because it is invalid, such as an invalid decla-
ration within an @media-rule, does not make the entire at-rule invalid.
* Unexpected end of style sheet.
User agents must close all open constructs (for example: blocks, parentheses, brack-
ets, rules, strings, and comments) at the end of the style sheet. For example:

@media screen {
p:before { content: 'Hello

— 54—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

would be treated the same as:

@media screen {
p:before { content: 'Hello'; }
}

in a conformant UA.
* Unexpected end of string.
User agents must close strings upon reaching the end of a line (i.e., before an un-
escaped line feed, carriage return or form feed character), but then drop the construct
(declaration or rule) in which the string was found. For example:

p
color: green;
font-family: 'Courier New Times

color: red;
color: green;

}
...would be treated the same as:

p { color: green; color: green; }

...because the second declaration (from 'font-family' to the semicolon after 'color: red') is
invalid and is dropped.

- See also Rule sets, declaration blocks, and selectorsP° for parsing rules for declaration
blocks.

4.3 Values

4.3.1 Integers and real numbers

Some value types may have integer values (denoted by <integer>) or real number values
(denoted by <number>). Real numbers and integers are specified in decimal notation only.
An <integer> consists of one or more digits "0" to "9". A <number> can either be an <inte-
ger>, or it can be zero or more digits followed by a dot (.) followed by one or more digits.
Both integers and real numbers may be preceded by a "-" or "+" to indicate the sign. -0 is
equivalent to 0 and is not a negative number.

Note that many properties that allow an integer or real number as a value actually restrict
the value to some range, often to a non-negative value.

4.3.2 Lengths

Lengths refer to distance measurements.

The format of a length value (denoted by <length> in this specification) is a <number> p-55
(with or without a decimal point) immediately followed by a unit identifier (e.g., px, em, etc.).
After a zero length, the unit identifier is optional.

— 55—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

Some properties allow negative length values, but this may complicate the formatting
model and there may be implementation-specific limits. If a negative length value cannot be
supported, it should be converted to the nearest value that can be supported.

If a negative length value is set on a property that does not allow negative length values,
the declaration is ignored.

In cases where the used? 88 length cannot be supported, user agents must approximate
it in the actual value.P-88

There are two types of length units: relative and absolute. Relative length units specify a
length relative to another length property. Style sheets that use relative units can more easi-
ly scale from one output environment to another.

Relative units are:

« em: the 'font-size'P-2"° of the relevant font

+ ex: the 'x-height' of the relevant font

hl { margin: 0.5em } /* em */
hl { margin: lex } /* ex */

The 'em' unit is equal to the computed value of the 'font-size'P-21° property of the element

on which it is used. The exception is when 'em' occurs in the value of the 'font-size' property
itself, in which case it refers to the font size of the parent element. It may be used for verti-
cal or horizontal measurement. (This unit is also sometimes called the quad-width in typo-
graphic texts.)

The 'ex' unit is defined by the element's first available font. The exception is when 'ex' oc-
curs in the value of the 'font-size'P-2"® property, in which case it refers to the 'ex' of the par-
ent element.

The 'x-height' is so called because it is often equal to the height of the lowercase "x".
However, an 'ex' is defined even for fonts that do not contain an "x".

The x-height of a font can be found in different ways. Some fonts contain reliable metrics
for the x-height. If reliable font metrics are not available, UAs may determine the x-height
from the height of a lowercase glyph. One possible heuristic is to look at how far the glyph
for the lowercase "0" extends below the baseline, and subtract that value from the top of its
bounding box. In the cases where it is impossible or impractical to determine the x-height, a
value of 0.5em should be used.

The rule:

hl { line-height: 1.2em }

means that the line height of "h1" elements will be 20% greater than the font size of the "h1"
elements. On the other hand:

hl { font-size: 1.2em }

means that the font-size of "h1" elements will be 20% greater than the font size inherited by
"h1" elements.

When specified for the root of the document tree p-40 (e.g., "HTML" in HTML), 'em' and
'ex' refer to the property's initial value p-27,

— 56 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

Child elements do not inherit the relative values specified for their parent; they inherit the
computed valuesP 88,

In the following rules, the computed 'text-indent'
not 45px, if "h1" is a child of the "body" element.

P-224 yalue of "n1" elements will be 36px,

body {

font-size: 12px;

text-indent: 3em; /* i.e., 36px */
}
hl { font-size: 15px }

Absolute length units are fixed in relation to each other. They are mainly useful when the
output environment is known. The absolute units consist of the physical units (in, cm, mm,
pt, pc) and the px unit:

* in: inches — 1in is equal to 2.54cm.

* cm: centimeters

« mm: millimeters

» pt: points — the points used by CSS are equal to 1/72nd of 1in.
* pc: picas — 1pc is equal to 12pt.

* px: pixel units — 1px is equal to 0.75pt.

For a CSS device, these dimensions are either anchored (i) by relating the physical units to
their physical measurements, or (ii) by relating the pixel unit to the reference pixel. For print
media and similar high-resolution devices, the anchor unit should be one of the standard
physical units (inches, centimeters, etc). For lower-resolution devices, and devices with un-
usual viewing distances, it is recommended instead that the anchor unit be the pixel unit.
For such devices it is recommended that the pixel unit refer to the whole number of device
pixels that best approximates the reference pixel.

Note that if the anchor unit is the pixel unit, the physical units might not match their
physical measurements. Alternatively if the anchor unit is a physical unit, the pixel unit
might not map to a whole number of device pixels.

Note that this definition of the pixel unit and the physical units differs from previous
versions of CSS. In particular, in previous versions of CSS the pixel unit and the physi-
cal units were not related by a fixed ratio: the physical units were always tied to their
physical measurements while the pixel unit would vary to most closely match the refer-
ence pixel. (This change was made because too much existing content relies on the
assumption of 96dpi, and breaking that assumption breaks the content.)

The reference pixel is the visual angle of one pixel on a device with a pixel density of 96d-
pi and a distance from the reader of an arm's length. For a nominal arm's length of 28 inch-
es, the visual angle is therefore about 0.0213 degrees. For reading at arm's length, 1px thus
corresponds to about 0.26 mm (1/96 inch).

The image below illustrates the effect of viewing distance on the size of a reference pixel:
a reading distance of 71 cm (28 inches) results in a reference pixel of 0.26 mm, while a
reading distance of 3.5 m (12 feet) results in a reference pixel of 1.3 mm.

—57—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

1.3m

<]

viewer

28 inches ;
71 ecm

140 inches
3.5 m

This second image illustrates the effect of a device's resolution on the pixel unit: an area
of 1px by 1px is covered by a single dot in a low-resolution device (e.g. a typical computer
display), while the same area is covered by 16 dots in a higher resolution device (such as a
printer).

laserprin
Il menitor screen
1px i 3
BRI o
e
, #
.' =1 denvice pixel
hl { margin: 0.5in } /* inches */
h2 { line-height: 3cm } /* centimeters */
h3 { word-spacing: 4mm } /* millimeters */
h4 { font-size: 12pt } /* points */
h4 { font-size: 1lpc } /* picas */
p { font-size: 12px } /* px */

4.3.3 Percentages

The format of a percentage value (denoted by <percentage> in this specification) is a
<number>P-°° immediately followed by '%".

— 58 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

Percentage values are always relative to another value, for example a length. Each prop-
erty that allows percentages also defines the value to which the percentage refers. The val-
ue may be that of another property for the same element, a property for an ancestor ele-
ment, or a value of the formatting context (e.g., the width of a containing bIockp'”s). When
a percentage value is set for a property of the rootP 4% element and the percentage is de-
fined as referring to the inherited value of some property, the resultant value is the percent-
age times the initial valueP 2’ of that property.

Since child elements (generally) inherit the computed values P-88 of their parent, in the fol-
lowing example, the children of the P element will inherit a value of 12px for 'line-
height'® 169 not the percentage value (120%):

p { font-size: 10px }
p { line-height: 120% } /* 120% of 'font-size' */

4.3.4 URLs and URIs

URI values (Uniform Resource Identifiers, see [RFC3986]P282, which includes URLs,
URNSs, etc) in this specification are denoted by <uri>. The functional notation used to desig-
nate URIs in property values is "url()", as in:

body { background: url ("http://www.example.com/pinkish.png") }

The format of a URI value is 'url(* followed by optional white space P-47 followed by an op-
tional single quote (') or double quote (") character followed by the URI itself, followed by an
optional single quote (') or double quote (") character followed by optional white space fol-
lowed by ')'. The two quote characters must be the same.

An example without quotes:

1i { list-style: url (http://www.example.com/redball.png) disc }

Some characters appearing in an unquoted URI, such as parentheses, white space char-
acters, single quotes (') and double quotes ("), must be escaped with a backslash so that
the resulting URI value is a URI token: "\(', \)".

Depending on the type of URI, it might also be possible to write the above characters as
URI-escapes (where "(" = %28, ")" = %29, etc.) as described in [RFC3986]P-282,

Note that COMMENT tokens cannot occur within other tokens: thus,
“url(/*x*/pic.png)" denotes the URI "/*x*/pic.png"”, not "pic.png"”.

In order to create modular style sheets that are not dependent on the absolute location of
a resource, authors may use relative URIs. Relative URIs (as defined in [RFCS986]'°'282)
are resolved to full URIs using a base URI. RFC 3986, section 5, defines the normative al-
gorithm for this process. For CSS style sheets, the base URI is that of the style sheet, not
that of the source document.

For example, suppose the following rule:

body { background: url ("yellow") }

—59_

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

is located in a style sheet designated by the URI:

http://www.example.org/style/basic.css

The background of the source document's BODY will be tiled with whatever image is de-
scribed by the resource designated by the URI

http://www.example.org/style/yellow

User agents may vary in how they handle invalid URIs or URIs that designate unavailable
or inapplicable resources.

4.3.5 Counters

Counters are denoted by case-sensitive identifiers (see the 'counter-increment'® 186 and
'counter-reset'P- 186 properties). To refer to the value of a counter, the notation
'‘counter(<identifier>)" or 'counter(<identifier>, <'list-style-type'>)", with optional white space
separating the tokens, is used. The default style is 'decimal'.

To refer to a sequence of nested counters of the same name, the notation is 'coun-
ters(<identifier>, <string>)' or 'counters(<identifier>, <string>, <'list-style-type'>)" with option-
al white space separating the tokens.

See "Nested counters and scope"""188 in the chapter on generated contentP-© for how
user agents must determine the value or values of the counter. See the definition of counter
values of the 'content'P- 182 property for how it must convert these values to a string.

In CSS 2.1, the values of counters can only be referred to from the 'content' P18 property.
Note that 'none' is a possible <'list-style-type'>: 'counter(x, none)' yields an empty string.

Here is a style sheet that numbers paragraphs (p) for each chapter (h1). The paragraphs
are numbered with roman numerals, followed by a period and a space:

p {counter-increment: par-num}
hl {counter-reset: par-num}
p:before {content: counter (par-num, upper-roman) ". "}

4.3.6 Colors

A <color> is either a keyword or a numerical RGB specification.

The list of color keywords is: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy,
olive, orange, purple, red, silver, teal, white, and yellow. These 17 colors have the following
values:

TN EEE0000lorange #fA500 yellow #ffff00
FUCRSIENTO v hite #ffffff lime #00ff00
NN qua #00ffft

silver #c0c0c0

In addition to these color keywords, users may specify keywords that correspond to the
colors used by certain objects in the user's environment. Please consult the section on sys-
tem colors for more information.

— 60—

ui.html#system-colors
ui.html#system-colors

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

body {color: black; background: white }
hl { color: maroon }
h2 { color: olive }

The RGB color model is used in numerical color specifications. These examples all speci-
fy the same color:

em { color: #f00 } /* #rgb */

em { color: #££0000 } /* #rrggbb */
em { color: rgb(255,0,0) }

em { color: rgb(100%, 0%, 0%) 1}

The format of an RGB value in hexadecimal notation is a '#' immediately followed by ei-
ther three or six hexadecimal characters. The three-digit RGB notation (#rgb) is converted
into six-digit form (#rrggbb) by replicating digits, not by adding zeros. For example, #fb0 ex-
pands to #ffbb00. This ensures that white (#ffffff) can be specified with the short notation
(#fff) and removes any dependencies on the color depth of the display.

The format of an RGB value in the functional notation is 'rgb(' followed by a comma-
separated list of three numerical values (either three integer values or three percentage val-
ues) followed by ')'. The integer value 255 corresponds to 100%, and to F or FF in the hexa-
decimal notation: rgb(255,255,255) = rgb(100%,100%,100%) = #FFF. White space p-47
characters are allowed around the numerical values.

All RGB colors are specified in the sRGB color space (see [SRGB]p'283). User agents
may vary in the fidelity with which they represent these colors, but using sRGB provides an
unambiguous and objectively measurable definition of what the color should be, which can
be related to international standards (see [COLORIMETRY]p'282).

Conforming user agents p-42 may limit their color-displaying efforts to performing a
gamma-correction on them. sRGB specifies a display gamma of 2.2 under specified viewing
conditions. User agents should adjust the colors given in CSS such that, in combination
with an output device's "natural" display gamma, an effective display gamma of 2.2 is pro-
duced. Note that only colors specified in CSS are affected; e.g., images are expected to
carry their own color information.

Values outside the device gamut should be clipped or mapped into the gamut when the
gamut is known: the red, green, and blue values must be changed to fall within the range
supported by the device. Users agents may perform higher quality mapping of colors from
one gamut to another. For a typical CRT monitor, whose device gamut is the same as
sRGB, the four rules below are equivalent:

em { color: rgb(255,0,0) } /* integer range 0 - 255 */

em { color: rgb(300,0,0) } /* clipped to rgb(255,0,0) */

em { color: rgb(255,-10,0) } /* clipped to rgb(255,0,0) */

em { color: rgb(110%, 0%, 0%) 1} /* clipped to rgb(100%,0%,0%) */

Other devices, such as printers, have different gamuts than sRGB; some colors outside
the 0..255 sRGB range will be representable (inside the device gamut), while other colors
inside the 0..255 sRGB range will be outside the device gamut and will thus be mapped.

Note. Mapping or clipping of color values should be done to the actual device gamut
if known (which may be larger or smaller than 0..255).

— 61—

— 4 Syntax and basic data types —

4.3.7 Strings

.E Strings can either be written with double quotes or with single quotes. Double quotes can-

g not occur inside double quotes, unless escaped (e.g., as \" or as "\22'). Analogously for sin-

S gle quotes (e.g., "\" or "\27").

E "this is a 'string'"

8 "this is a \"string\""

@ 'this is a "string"'

e '"this is a \'string\''

9

g A string cannot directly contain a newline. To include a newline in a string, use an escape
representing the line feed character in ISO-10646 (U+000A), such as "A" or "\00000a". This
character represents the generic notion of "newline" in CSS. See the 'content' P 182 property

for an example.

It is possible to break strings over several lines, for aesthetic or other reasons, but in such
a case the newline itself has to be escaped with a backslash (\). For instance, the following
two selectors are exactly the same:

al[title="a not s\
o very long title"] {/*...*/}
altitle="a not so very long title"] {/*...*/}

4.3.8 Unsupported Values

If a UA does not support a particular value, it should ignore that value when parsing style
sheets, as if that value was an illegal value P-53 For example:

h3 {
display: inline;
display: run-in;

}

A UA that supports the 'run-in' value for the 'display' property will accept the first display
declaration and then "write over" that value with the second display declaration. A UA that
does not support the 'run-in' value will process the first display declaration and ignore the
second display declaration.

4.4 CSS style sheet representation

A CSS style sheet is a sequence of characters from the Universal Character Set (see
[ISO10646]p'282). For transmission and storage, these characters must be encoded by a
character encoding that supports the set of characters available in US-ASCII (e.g., UTF-8,
ISO 8859-x, SHIFT JIS, etc.). For a good introduction to character sets and character en-
codings, please consult the HTML 4 specification ([HTML4]p'282, chapter 5). See also the
XML 1.0 specification ([XML10]P-?83, sections 2.2 and 4.3.3, and Appendix F).

— 62 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

When a style sheet is embedded in another document, such as in the STYLE element or
"style" attribute of HTML, the style sheet shares the character encoding of the whole docu-
ment.

When a style sheet resides in a separate file, user agents must observe the following pri-
orities when determining a style sheet's character encoding (from highest priority to lowest):

1. An HTTP "charset" parameter in a "Content-Type" field (or similar parameters in other
protocols)

BOM and/or @charset (see below)

<link charset=""> or other metadata from the linking mechanism (if any)

charset of referring style sheet or document (if any)

Assume UTF-8

Ok wn

Authors using an @charset rule must place the rule at the very beginning of the style sheet,
preceded by no characters. (If a byte order mark is appropriate for the encoding used, it
may precede the @charset rule.)

After "@charset", authors specify the name of a character encoding (in quotes). For ex-
ample:

@charset "ISO-8859-1";

@charset must be written literally, i.e., the 10 characters '@charset " (lowercase, no back-
slash escapes), followed by the encoding name, followed by ™;".

The name must be a charset name as described in the IANA registry. See
[CHARSETS]F"283 for a complete list of charsets. Authors should use the charset names
marked as "preferred MIME name" in the IANA registry.

User agents must support at least the UTF-8 encoding.

User agents must ignore any @charset rule not at the beginning of the style sheet. When
user agents detect the character encoding using the BOM and/or the @charset rule, they

should follow the following rules:

» Except as specified in these rules, all @charset rules are ignored.

* The encoding is detected based on the stream of bytes that begins the style sheet. The
following table gives a set of possibilities for initial byte sequences (written in hexadeci-
mal). The first row that matches the beginning of the style sheet gives the result of encod-
ing detection based on the BOM and/or @charset rule. If no rows match, the encoding
cannot be detected based on the BOM and/or @charset rule. The notation (...)* refers to
repetition for which the best match is the one that repeats as few times as possible. The
bytes marked "XX" are those used to determine the name of the encoding, by treating
them, in the order given, as a sequence of ASCII characters. Bytes marked "YY" are simi-
lar, but need to be transcoded into ASCII as noted. User agents may ignore entries in the
table if they do not support any encodings relevant to the entry.

| Initial Bytes | Result |
EF BB BF 40 63 68 61 72 73 65 74 20 22 (XX)* 22 n

3B as specified

[EF BB BF UTF-8 |

— 63 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

[40 63 68 61 72 73 65 74 20 22 (XX)* 22 3B

las specified

FE FF 00 40 00 63 00 68 00 61 00 72 00 73 00 65
00 74 00 20 00 22 (00 XX)* 00 22 00 3B

as specified (with BE endianness if
not specified)

00 40 00 63 00 68 00 61 00 72 00 73 00 65 00 74
00 20 00 22 (00 XX)* 00 22 00 3B

as specified (with BE endianness if
not specified)

FF FE 40 00 63 00 68 00 61 00 72 00 73 00 65 00
74 00 20 00 22 00 (XX 00)* 22 00 3B 00

as specified (with LE endianness if
not specified)

40 00 63 00 68 00 61 00 72 00 73 00 65 00 74 00
20 00 22 00 (XX 00)* 22 00 3B 00

as specified (with LE endianness if
not specified)

00 00 FE FF 00 00 00 40 00 00 00 63 00 00 00 68
00 00 00 61 00 00 00 72 00 00 00 73 00 00 00 65
00 00 00 74 00 00 00 20 00 00 00 22 (00 00 00
XX)* 00 00 00 22 00 00 00 3B

as specified (with BE endianness if
not specified)

00 00 00 40 00 00 00 63 00 00 00 68 00 00 00 61
00 00 00 72 00 00 00 73 00 00 00 65 00 00 00 74
00 00 00 20 00 00 00 22 (00 00 00 XX)* 00 00 00
22 00 00 00 3B

as specified (with BE endianness if
not specified)

00 00 FF FE 00 00 40 00 00 00 63 00 00 00 68 00
00 00 61 00 00 00 72 00 00 00 73 00 00 00 65 00
00 00 74 00 00 00 20 00 00 00 22 00 (00 00 XX
00)* 00 00 22 00 00 00 3B 00

as specified (with 2143 endianness
if not specified)

00 00 40 00 00 00 63 00 00 00 68 00 00 00 61 00
00 00 72 00 00 00 73 00 00 00 65 00 00 00 74 00
00 00 20 00 00 00 22 00 (00 00 XX 00)* 00 00 22
00 00 00 3B 00

as specified (with 2143 endianness
if not specified)

FE FF 00 00 00 40 00 00 00 63 00 00 00 68 00 00
00 61 00 00 00 72 00 00 00 73 00 00 00 65 00 00
00 74 00 00 00 20 00 00 00 22 00 00 (00 XX 00
00)* 00 22 00 00 00 3B 00 00

as specified (with 3412 endianness
if not specified)

00 40 00 00 00 63 00 00 00 68 00 00 00 61 00 00
00 72 00 00 00 73 00 00 00 65 00 00 00 74 00 00
00 20 00 00 00 22 00 00 (00 XX 00 00)* 00 22 00
00 00 3B 00 00

as specified (with 3412 endianness
if not specified)

FF FE 00 00 40 00 00 00 63 00 00 00 68 00 00 00
61 00 00 00 72 00 00 00 73 00 00 00 65 00 00 00
74 00 00 00 20 00 00 00 22 00 00 00 (XX 00 00
00)* 22 00 00 00 3B 00 00 00

as specified (with LE endianness if
not specified)

40 00 00 00 63 00 00 00 68 00 00 00 61 00 00 00
72 00 00 00 73 00 00 00 65 00 00 00 74 00 00 00
20 00 00 00 22 00 00 00 (XX 00 00 00)* 22 00 00
00 3B 00 00 00

as specified (with LE endianness if
not specified)

00 00 FE FF

IUTF-32-BE

IFF FE 00 00

IUTF-32-LE

— 64—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 4 Syntax and basic data types —

00 00 FF FE |UTF-32-2143 |
IFE FF 00 00 UTF-32-3412 |
IFE FF |UTF-16-BE |
IFF FE UTF-16-LE |

as specified, transcoded from

7C 83 88 81 99 A2 85 A3 40 7F (YY)* 7F 5E EBODIC (o ASCII

as specified, transcoded from IB-

AE 83 88 81 99 A2 85 A3 40 FC (YY)* FC 5E M1026 to ASCII

as specified, transcoded from GSM

006368 61727365742022(YY)"223B 03.38 to ASCII

User agents may support addition-
al, analogous, patterns if they sup-
port encodings that are not handled
by the patterns here

analogous patterns

+ If the encoding is detected based on one of the entries in the table above marked "as
specified", the user agent ignores the style sheet if it does not parse an appropriate
@charset rule at the beginning of the stream of characters resulting from decoding in the
chosen @charset. This ensures that:

o @charset rules should only function if they are in the encoding of the style sheet,
> byte order marks are ignored only in encodings that support a byte order mark, and
o encoding names cannot contain newlines.

User agents must ignore style sheets in unknown encodings.

4.4 .1 Referring to characters not represented in a character encoding

A style sheet may have to refer to characters that cannot be represented in the current
character encoding. These characters must be written as escaped P-49 references to 1ISO
10646 characters. These escapes serve the same purpose as numeric character refer-
ences in HTML or XML documents (see [HTML4]p'282, chapters 5 and 25).

The character escape mechanism should be used when only a few characters must be
represented this way. If most of a style sheet requires escaping, authors should encode it
with a more appropriate encoding (e.g., if the style sheet contains a lot of Greek characters,
authors might use "ISO-8859-7" or "UTF-8").

Intermediate processors using a different character encoding may translate these es-
caped sequences into byte sequences of that encoding. Intermediate processors must not,
on the other hand, alter escape sequences that cancel the special meaning of an ASCII
character.

Conforming user agents P-42 must correctly map to ISO-10646 all characters in any char-
acter encodings that they recognize (or they must behave as if they did).

For example, a style sheet transmitted as ISO-8859-1 (Latin-1) cannot contain Greek let-
ters directly: "koupog" (Greek: "kouros") has to be written as "\3BA\3BF\3C5\3C1\3BF\3C2".

Note. In HTML 4, numeric character references are interpreted in "style" attribute
values but not in the content of the STYLE element. Because of this asymmetry, we

— 65—

c
0
e
o
=
@
=
£
O
¥
@
o’
9
"
2

— 4 Syntax and basic data types —

recommend that authors use the CSS character escape mechanism rather than numer-
ic character references for both the "style" attribute and the STYLE element. For exam-
ple, we recommend:

...

rather than:

...

— 66 —

— 5 Selectors —

5 Selectors

c
o]
£ Contents
=
v 5.1 Pattern matching 67
E 5.2 Selector syntax. 68
0 5.2 GroUpiNg . .« oottt 69
@ 5.3 Universal selector. 69
oc 5.4 Type selectors 69
H 5.5 Descendant selectors. 70
< 5.6 Child SEIECIONS\ttt 70
5.7 Adjacent sibling selectors. 71
5.8 Attribute selectors. 71
5.8.1 Matching attributes and attribute values 71
5.8.2 Default attribute values inDTDs i 73
5.8.3 Class seleCtors 74
5.9ID selectors 75
5.10 Pseudo-elements and pseudo-classes 76
5.11 PSeUdO-ClasSes 77
5.11.1 Hfirst-child pseudo-class 77
5.11.2 The link pseudo-classes: :link and :visited. 78
5.11.3 The dynamic pseudo-classes: :hover, :active, and focus................ 78
5.11.4 The language pseudo-class: :lang. 79
512 Pseudo-elements 80
5.12.1 The first-line pseudo-element. L 80
5.12.2 The :first-letter pseudo-element. 82
5.12.3 The :before and :after pseudo-elements 86

5.1 Pattern matching

In CSS, pattern matching rules determine which style rules apply to elements in the docu-
ment tree4°. These patterns, called selectors, may range from simple element names to
rich contextual patterns. If all conditions in the pattern are true for a certain element, the se-
lector matches the element.

The case-sensitivity of document language element names in selectors depends on the
document language. For example, in HTML, element names are case-insensitive, but in
XML they are case-sensitive.

The following table summarizes CSS 2.1 selector syntax:

Described in
section

Universal se-

lectorP-°

Type selec-
tors P69

Pattern Meaning

Matches any element.

Matches any E element (i.e., an element of type E).

—67—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 5 Selectors —

EE Matches any F element that is a descendant of an E ele- ||[Descendant
ment. selectorsP °
E>F Matches any F element that is a child of an element E. g:;lg %alec-
The :first-child
E:first-child Matches element E when E is the first child of its parent. |pseudo-
classP 7’
" Matches element E if E is the source anchor of a hyper- |[The link
E:link . . : . T
L link of which the target is not yet visited (:link) or already |pseudo-
E:visited . e p.78
visited (:visited). classes
E:active The dynamic
E:hover Matches E during certain user actions. pseudo-
E:focus classesP '8
Matches element of type E if it is in (human) language ¢ |[The :lang()
E:lang(c) (the document language specifies how language is de- |pseudo-
termined). classP "
E+F Matches any F element immediately preceded by a sib- ||Adjacent se-
ling element E. lectors P 7"
Matches any E element with the "foo" attribute set (what-||Attribute se-
E[foo] p.71
ever the value). lectors
—n . |[Matches any E element whose "foo" attribute value is ex-||Attribute se-
E[foo="warning"] " . p.71
actly equal to "warning". lectors

E[foo~="warning"]

Matches any E element whose "foo" attribute value is a
list of space-separated values, one of which is exactly
equal to "warning".

Attribute se-
lectors? 7"

Matches any E element whose "lang" attribute has a

Attribute se-

Ellang|="en"] hyphen-separated list of values beginning (from the left) p.71
Hl o lectors
with "en".
, Language specific. (In HTML, the same as Class selec-
DIV.warning DIV[class~="warning"].) torsP 74
E#myid Matches any E element with ID equal to "myid". :ODrSsglgzsc—

5.2 Selector syntax

A simple selector is either a type selecto

rp.69

or universal selector? % followed immediately

by zero or more attribute selectors P-71 1D selectors® ’®, or pseudo-classes P-76 'in any or-
der. The simple selector matches if all of its components match.

Note: the terminology used here in CSS 2.1 is different from what is used in CSS3.
For example, a "simple selector" refers to a smaller part of a selector in CSS3 than in
CSS 2.1. See the CSS3 Selectors module [CSSBSEL]p'284.

— 68 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 5 Selectors —

A selector is a chain of one or more simple selectors separated by combinators. Combi-
nators are: white space, ">", and "+". White space may appear between a combinator and
the simple selectors around it.

The elements of the document tree that match a selector are called subjects of the selec-
tor. A selector consisting of a single simple selector matches any element satisfying its re-
quirements. Prepending a simple selector and combinator to a chain imposes additional
matching constraints, so the subjects of a selector are always a subset of the elements
matching the last simple selector.

One pseudo-element'o'76 may be appended to the last simple selector in a chain, in which
case the style information applies to a subpart of each subject.

5.2.1 Grouping

When several selectors share the same declarations, they may be grouped into a comma-
separated list.
In this example, we condense three rules with identical declarations into one. Thus,

hl { font-family: sans-serif }

h2 { font-family: sans-serif }

h3 { font-family: sans-serif }
is equivalent to:

hl, h2, h3 { font-family: sans-serif }

CSS offers other "shorthand" mechanisms as well, including multiple declarations®°! and
shorthand properties® ?’.

5.3 Universal selector

The universal selector, written "*", matches the name of any element type. It matches any
single element in the document tree. P40

If the universal selector is not the only component of a simple selectorP 88, the " may be
omitted. For example:

* *[lang=fr] and [lang=fr] are equivalent.
*+ *.warning and .warning are equivalent.
* *#myid and #myid are equivalent.

5.4 Type selectors

A type selector matches the name of a document language element type. A type selector
matches every instance of the element type in the document tree.
The following rule matches all H1 elements in the document tree:

hl { font-family: sans-serif }

— 69—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 5 Selectors —

5.5 Descendant selectors

At times, authors may want selectors to match an element that is the descendant of another
element in the document tree (e.g., "Match those EM elements that are contained by an H1
element"). Descendant selectors express such a relationship in a pattern. A descendant se-
lector is made up of two or more selectors separated by white space P-47 A descendant se-
lector of the form "A B" matches when an element B is an arbitrary descendant of some an-
cestor? 4% element .

For example, consider the following rules:

hl { color: red }
em { color: red }

Although the intention of these rules is to add emphasis to text by changing its color, the ef-
fect will be lost in a case such as:

<H1>This headline is very important</H1>

We address this case by supplementing the previous rules with a rule that sets the text col-
or to blue whenever an EM occurs anywhere within an H1:

hl { color: red }

em { color: red }
hl em { color: blue }

The third rule will match the EM in the following fragment:

<H1>This headline
is very important</HI1>

The following selector:
div * p

matches a P element that is a grandchild or later descendant of a DIV element. Note the
white space on either side of the "*" is not part of the universal selector; the white space is a
combinator indicating that the DIV must be the ancestor of some element, and that that ele-
ment must be an ancestor of the P.

The selector in the following rule, which combines descendant and attribute selectors p-71,
matches any element that (1) has the "href" attribute set and (2) is inside a P that is itself in-
side a DIV:

div p *[href]

5.6 Child selectors

A child selector matches when an element is the child®*° of some element. A child selector
is made up of two or more selectors separated by ">".

—70—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 5 Selectors —

The following rule sets the style of all P elements that are children of BODY:
body > P { line-height: 1.3 }
The following example combines descendant selectors and child selectors:

div ol>1li p

It matches a P element that is a descendant of an LI; the LI element must be the child of an
OL element; the OL element must be a descendant of a DIV. Notice that the optional white
space around the ">" combinator has been left out.

For information on selecting the first child of an element, please see the section on the
first-child P77 pseudo-class below.

5.7 Adjacent sibling selectors

Adjacent sibling selectors have the following syntax: E1 + E2, where E2 is the subject of the
selector. The selector matches if E1 and E2 share the same parent in the document tree
and E1 immediately precedes E2, ignoring non-element nodes (such as text nodes and
comments).

Thus, the following rule states that when a P element immediately follows a MATH ele-
ment, it should not be indented:

math + p { text-indent: 0 }

The next example reduces the vertical space separating an H1 and an H2 that immediately
follows it:

hl + h2 { margin-top: -5mm }

The following rule is similar to the one in the previous example, except that it adds a class
selector. Thus, special formatting only occurs when H1 has class="opener":

hl.opener + h2 { margin-top: -5mm }

5.8 Attribute selectors

CSS 2.1 allows authors to specify rules that match elements which have certain attributes
defined in the source document.

5.8.1 Matching attributes and attribute values

Attribute selectors may match in four ways:
[att]

Match when the element sets the "att" attribute, whatever the value of the attribute.
[att=val]

Match when the element's "att" attribute value is exactly "val".

—71 -

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 5 Selectors —

[att~=val]
Represents an element with the att attribute whose value is a white space-separated
list of words, one of which is exactly "val". If "val" contains white space, it will never rep-
resent anything (since the words are separated by spaces). If "val" is the empty string, it
will never represent anything either.
[att|=val]
Represents an element with the att attribute, its value either being exactly "val" or be-
ginning with "val" immediately followed by "-" (U+002D). This is primarily intended to al-
low language subcode matches (e.g., the hreflang attribute on the a element in
HTML) as described in BCP 47 ([BCP47]" 284) or its successor. For 1ang (or
xml : lang) language subcode matching, please see the : lang pseudo-classp'79.
Attribute values must be identifiers or strings. The case-sensitivity of attribute names and
values in selectors depends on the document language.
For example, the following attribute selector matches all H1 elements that specify the "ti-
tle" attribute, whatever its value:

hl[title] { color: blue; }

In the following example, the selector matches all SPAN elements whose "class" attribute
has exactly the value "example":

span[class=example] { color: blue; }

Multiple attribute selectors can be used to refer to several attributes of an element, or
even several times to the same attribute.

Here, the selector matches all SPAN elements whose "hello" attribute has exactly the val-
ue "Cleveland" and whose "goodbye" attribute has exactly the value "Columbus":

span[hello="Cleveland"] [goodbye="Columbus"] { color: blue; }

The following selectors illustrate the differences between and "~=". The first selector
will match, for example, the value "copyright copyleft copyeditor” for the "rel" attribute. The
second selector will only match when the "href" attribute has the value "http://www.w3.org/".

alrel~="copyright"]
alhref="http://www.w3.0rg/"]

The following rule hides all elements for which the value of the "lang" attribute is "fr" (i.e.,
the language is French).

*[lang=fr] { display : none }

The following rule will match for values of the "lang" attribute that begin with "en", includ-

ing "en", "en-US", and "en-cockney":
*[lang|="en"] { color : red }
Similarly, the following aural style sheet rules allow a script to be read aloud in different

voices for each role:

72—

— 5 Selectors —

DIALOGUE [character=romeo]
{ voice-family: "Laurence Olivier", charles, male }

DIALOGUE [character=juliet]
{ voice-family: "Vivien Leigh", victoria, female }

5.8.2 Default attribute values in DTDs

Matching takes place on attribute values in the document tree. Default attribute values may
be defined in a DTD or elsewhere, but cannot always be selected by attribute selectors.
Style sheets should be designed so that they work even if the default values are not includ-
ed in the document tree.

More precisely, a UA may, but is not required to, read an "external subset" of the DTD but
is required to look for default attribute values in the document's "internal subset." (See [XM-
L1O]p'283 for definitions of these subsets.) Depending on the UA, a default attribute value
defined in the external subset of the DTD might or might not appear in the document tree.

A UA that recognizes an XML namespace [XMLNAMESPACES]"'285 may, but is not re-
quired to, use its knowledge of that namespace to treat default attribute values as if they
were present in the document. (E.g., an XHTML UA is not required to use its built-in knowl-
edge of the XHTML DTD.)

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

Note that, typically, implementations choose to ignore external subsets.

For example, consider an element EXAMPLE with an attribute "notation" that has a de-
fault value of "decimal”. The DTD fragment might be

<!ATTLIST EXAMPLE notation (decimal,octal) "decimal">

If the style sheet contains the rules

EXAMPLE [notation=decimal] { /*... default property settings ...*/ }
EXAMPLE [notation=octal] { /*... other settings...*/ }

the first rule might not match elements whose "notation" attribute is set by default, i.e., not
set explicitly. To catch all cases, the attribute selector for the default value must be

dropped:
EXAMPLE { /*... default property settings ...*/ }
EXAMPLE [notation=octal] { /*... other settings...*/ }

Here, because the selector EXAMPLE [notation=octal] is more specific'“"92 than the
type selector alone, the style declarations in the second rule will override those in the first
for elements that have a "notation" attribute value of "octal". Care has to be taken that all
property declarations that are to apply only to the default case are overridden in the non-
default cases' style rules.

—73—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
gz

— 5 Selectors —

5.8.3 Class selectors

Working with HTML, authors may use the period (.) notation as an alternative to the ~= no-
tation when representing the class attribute. Thus, for HTML, div.value and
div[class~=value] have the same meaning. The attribute value must immediately fol-
low the "period" (.). UAs may apply selectors using the period (.) notation in XML docu-
ments if the UA has namespace specific knowledge that allows it to determine which at-
tribute is the "class" attribute for the respective namespace. One such example of name-
space specific knowledge is the prose in the specification for a particular namespace (e.g.,
SVG 1.1 [SVG11]P-?84 describes the SVG "class" attribute and how a UA should interpret it,
and similarly MathML 3.0 [MATH30]P-284 describes the MathML "class" attribute.)

For example, we can assign style information to all elements with class~="pastoral™"
as follows:

.pastoral { color: green } / all elements with class~=pastoral */

or just

.pastoral { color: green } /* all elements with class~=pastoral */

The following assigns style only to H1 elements with class~="pastoral™":

Hl.pastoral { color: green } /* Hl elements with class~=pastoral */

Given these rules, the first H1 instance below would not have green text, while the second
would:

<H1>Not green</H1>
<H1 class="pastoral">Very green</H1>

To match a subset of "class" values, each value must be preceded by a ".".
For example, the following rule matches any P element whose "class" attribute has been
assigned a list of space-separated values that includes "pastoral" and "marine":

p.marine.pastoral { color: green }

This rule matches when class="pastoral blue aqua marine" but does not match
for class="pastoral blue".

Note. CSS gives so much power to the "class” attribute, that authors could conceiv-
ably design their own "document language” based on elements with almost no associ-
ated presentation (such as DIV and SPAN in HTML) and assigning style information
through the "class” attribute. Authors should avoid this practice since the structural ele-
ments of a document language often have recognized and accepted meanings and
author-defined classes may not.

Note: If an element has multiple class attributes, their values must be concatenated
with spaces between the values before searching for the class. As of this time the

— 74 —

http://www.w3.org/TR/2003/REC-SVG11-20030114/styling.html#ClassAttribute
http://www.w3.org/TR/MathML2/chapter2.html#fund.globatt

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 5 Selectors —

working group is not aware of any manner in which this situation can be reached, how-
ever, so this behavior is explicitly non-normative in this specification.

5.9 ID selectors

Document languages may contain attributes that are declared to be of type ID. What makes
attributes of type ID special is that no two such attributes can have the same value; whatev-
er the document language, an ID attribute can be used to uniquely identify its element. In
HTML all ID attributes are named "id"; XML applications may name ID attributes differently,
but the same restriction applies.

The ID attribute of a document language allows authors to assign an identifier to one ele-
ment instance in the document tree. CSS ID selectors match an element instance based on
its identifier. A CSS ID selector contains a "#" immediately followed by the ID value, which
must be an identifier.

Note that CSS does not specify how a UA knows the ID attribute of an element. The
UA may, e.g., read a document's DTD, have the information hard-coded or ask the
user.

The following ID selector matches the H1 element whose ID attribute has the value
"chapter1™:

hl#chapterl { text-align: center }

In the following example, the style rule matches the element that has the ID value "z98y".
The rule will thus match for the P element:

<HEAD>
<TITLE>Match P</TITLE>
<STYLE type="text/css">
*#2z98y { letter-spacing: 0.3em }
</STYLE>
</HEAD>
<BODY>
<P 1d=z98y>Wide text</P>
</BODY>

In the next example, however, the style rule will only match an H1 element that has an ID
value of "z98y". The rule will not match the P element in this example:

<HEAD>
<TITLE>Match H1 only</TITLE>
<STYLE type="text/css">
H1#z98y { letter-spacing: 0.5em }
</STYLE>
</HEAD>
<BODY>
<P 1d=z98y>Wide text</P>
</BODY>

—75—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 5 Selectors —

ID selectors have a higher specificity than attribute selectors. For example, in HTML, the
selector #p123 is more specific than [1d=p123] in terms of the cascade” .

Note. In XML 1.0 [XML10]" 283, the information about which attribute contains an el-
ement's IDs is contained in a DTD. When parsing XML, UAs do not always read the
DTD, and thus may not know what the ID of an element is. If a style sheet designer
knows or suspects that this will be the case, he should use normal attribute selectors
instead: [name=p371] instead of #p371. However, the cascading order of normal at-
tribute selectors is different from ID selectors. It may be necessary to add an "limpor-
tant” priority to the declarations: [name=p371] {color: red ! important}.

If an element has multiple ID attributes, all of them must be treated as IDs for that ele-
ment for the purposes of the ID selector. Such a situation could be reached using mixtures
of xml:id [XMLID]P?8%, DOM3 Core [DOM-LEVEL-3-CORE]P284 XML DTDs [XML10]P-283
and namespace-specific knowledge.

5.10 Pseudo-elements and pseudo-classes

In CSS 2.1, style is normally attached to an element based on its position in the document
treeP 40 This simple model is sufficient for many cases, but some common publishing sce-
narios may not be possible due to the structure of the document tree P-40 For instance, in
HTML 4 (see [HTML4]" 282), no element refers to the first line of a paragraph, and therefore
no simple CSS selector may refer to it.

CSS introduces the concepts of pseudo-elements and pseudo-classes to permit format-
ting based on information that lies outside the document tree.

» Pseudo-elements create abstractions about the document tree beyond those specified by
the document language. For instance, document languages do not offer mechanisms to
access the first letter or first line of an element's content. CSS pseudo-elements allow
style sheet designers to refer to this otherwise inaccessible information. Pseudo-elements
may also provide style sheet designers a way to assign style to content that does not ex-
ist in the source document (e.g., the :before and :after? 18 pseudo-elements give access
to generated content).

» Pseudo-classes classify elements on characteristics other than their name, attributes or
content; in principle characteristics that cannot be deduced from the document tree.
Pseudo-classes may be dynamic, in the sense that an element may acquire or lose a
pseudo-class while a user interacts with the document. The exceptions are "first-
chiId'p'77, which can be deduced from the document tree, and ':Iang()'p'79, which can be
deduced from the document tree in some cases.

Neither pseudo-elements nor pseudo-classes appear in the document source or document
tree.

Pseudo-classes are allowed anywhere in selectors while pseudo-elements may only be
appended after the last simple selector of the selector.

Pseudo-element and pseudo-class names are case-insensitive.

— 76—

— 5 Selectors —

Some pseudo-classes are mutually exclusive, while others can be applied simultaneously
to the same element. In case of conflicting rules, the normal cascading order? % deter-
mines the outcome.

5.11 Pseudo-classes

5.11.1 first-child pseudo-class

The :first-child pseudo-class matches an element that is the first child element of some oth-
er element.

In the following example, the selector matches any P element that is the first child of a
DIV element. The rule suppresses indentation for the first paragraph of a DIV:

c
3
I
o
c
@
£
E
(o]
O
@
o’
9
gg

div > p:first-child { text-indent: 0 }
This selector would match the P inside the DIV of the following fragment:

<P> The last P before the note.
<DIV class="note">

<P> The first P inside the note.
</DIV>

but would not match the second P in the following fragment:

<P> The last P before the note.
<DIV class="note">

<H2>Note</H2>

<P> The first P inside the note.
</DIV>

The following rule sets the font weight to 'bold' for any EM element that is some descen-
dant of a P element that is a first child:

p:first-child em { font-weight : bold }

Note that since anonymous P-116 hoxes are not part of the document tree, they are not
counted when calculating the first child.
For example, the EM in:

<P>abc default

is the first child of the P.
The following two selectors are equivalent:

* > a:first-child /* A is first child of any element */
a:first-child /* Same */

=77 —

— 5 Selectors —

5.11.2 The link pseudo-classes: :link and :visited

User agents commonly display unvisited links differently from previously visited ones. CSS
provides the pseudo-classes ":link' and ".visited' to distinguish them:

» The :link pseudo-class applies for links that have not yet been visited.
+ The :visited pseudo-class applies once the link has been visited by the user.

UAs may return a visited link to the (unvisited) "link' state at some point.

The two states are mutually exclusive.

The document language determines which elements are hyperlink source anchors. For
example, in HTML4, the link pseudo-classes apply to A elements with an "href" attribute.
Thus, the following two CSS 2.1 declarations have similar effect:

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

a:link { color: red }
:1link { color: red }

If the following link:

external link

has been visited, this rule:

a.external:visited { color: blue }
will cause it to be blue.

Note. It is possible for style sheet authors to abuse the :link and :visited pseudo-
classes to determine which sites a user has visited without the user's consent.

UAs may therefore treat all links as unvisited links, or implement other measures to pre-
serve the user's privacy while rendering visited and unvisited links differently. See
[P?)P]p'284 for more information about handling privacy.

5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus

Interactive user agents sometimes change the rendering in response to user actions. CSS
provides three pseudo-classes for common cases:

» The :hover pseudo-class applies while the user designates an element (with some point-
ing device), but does not activate it. For example, a visual user agent could apply this
pseudo-class when the cursor (mouse pointer) hovers over a box generated by the ele-
ment. User agents not supporting interactive media P-97 4o not have to support this
pseudo-class. Some conforming user agents supporting interactive media® 97 may not be
able to support this pseudo-class (e.g., a pen device).

+ The :active pseudo-class applies while an element is being activated by the user. For ex-
ample, between the times the user presses the mouse button and releases it.

_78 —

c
3
I
o
c
@
£
E
(o]
O
@
o’
9
g;

— 5 Selectors —

» The :focus pseudo-class applies while an element has the focus (accepts keyboard
events or other forms of text input).

An element may match several pseudo-classes at the same time.

CSS does not define which elements may be in the above states, or how the states are
entered and left. Scripting may change whether elements react to user events or not, and
different devices and UAs may have different ways of pointing to, or activating elements.

CSS 2.1 does not define if the parent of an element that is ":active' or ":hover' is also in
that state.

User agents are not required to reflow a currently displayed document due to pseudo-
class transitions. For instance, a style sheet may specify that the 'font-size' P-219 of an :ac-
tive link should be larger than that of an inactive link, but since this may cause letters to
change position when the reader selects the link, a UA may ignore the corresponding style
rule.

a:link { color: red } /* unvisited links */
a:visited { color: blue } /* visited links */
a:hover { color: yellow } /* user hovers */
aractive { color: lime } /* active links */

Note that the A:hover must be placed after the A:link and A:visited rules, since otherwise
the cascading rules will hide the 'color'P-204 property of the A:hover rule. Similarly, because
A:active is placed after A:hover, the active color (lime) will apply when the user both acti-
vates and hovers over the A element.

An example of combining dynamic pseudo-classes:

a:focus { background: yellow }
a:focus:hover { background: white }

The last selector matches A elements that are in pseudo-class :focus and in pseudo-class
:hover.

For information about the presentation of focus outlines, please consult the section on dy-
namic focus outlines P67,

Note. In CSS1, the ":active' pseudo-class was mutually exclusive with "link' and ":vis-
ited". That is no longer the case. An element can be both ":visited' and ":active' (or "link'
and ":active’) and the normal cascading rules determine which style declarations apply.

Note. Also note that in CSS1, the ":active' pseudo-class only applied to links.

5.11.4 The language pseudo-class: :lang

If the document language specifies how the human language of an element is determined, it
is possible to write selectors in CSS that match an element based on its language. For ex-
ample, in HTML [HTML4]p'282, the language is determined by a combination of the "lang"
attribute, the META element, and possibly by information from the protocol (such as HTTP
headers). XML uses an attribute called xml:lang, and there may be other document
language-specific methods for determining the language.

—79 —

— 5 Selectors —

The pseudo-class "lang(C)' matches if the element is in language C. Whether there is a
match is based solely on the identifier C being either equal to, or a hyphen-separated sub-
string of, the element's language value, in the same way as if performed by the '|=""'71 oper-
ator. The matching of C against the element's language value is performed case-
insensitively for characters within the ASCII range. The identifier C does not have to be a
valid language name.

C must not be empty.

Note: It is recommended that documents and protocols indicate language using
codes from BCP 47 [BCP47]'°'284 or its successor, and by means of "xml:lang" attribut-
es in the case of XML-based documents [XML1O]p'283. See "FAQ: Two-letter or three-
letter language codes."

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

The following rules set the quotation marks for an HTML document that is either in Cana-
dian French or German:

html:lang(fr-ca) { quotes: '« " ' »' }
html:lang(de) { quotes: '»' '«' '"\2039' '"\203A' }
:lang(fr) > Q { quotes: '« ' ' »' }

:lang(de) > Q { quotes: "»' '«' '"\2039' '"\203A' }

The second pair of rules actually set the 'quotes'” 183 property on Q elements according to

the language of its parent. This is done because the choice of quote marks is typically
based on the language of the element around the quote, not the quote itself: like this piece
of French “a I'improviste” in the middle of an English text uses the English quotation marks.

Note the difference between [lang|=xx] and :lang(xx). In this HTML example, only the
BODY matches [lang|=fr] (because it has a LANG attribute) but both the BODY and the
P match :lang(fr) (because both are in French).

<body lang=fr>
<p>Je suis Francais.</p>
</body>

5.12 Pseudo-elements

Pseudo-elements behave just like real elements in CSS with the exceptions described be-
low and elsewhere. - 18°

Note that the sections below do not define the exact rendering of "first-line' and "first-
letter' in all cases. A future level of CSS may define them more precisely.

5.12.1 The :first-line pseudo-element

The :first-line pseudo-element applies special styles to the contents of the first formatted
line of a paragraph. For instance:

p:first-line { text-transform: uppercase }

— 80—

http://www.w3.org/International/questions/qa-lang-2or3
http://www.w3.org/International/questions/qa-lang-2or3

— 5 Selectors —

The above rule means "change the letters of the first line of every paragraph to uppercase".
However, the selector "P:first-line" does not match any real HTML element. It does match a
pseudo-element that conforming user agents P-42 will insert at the beginning of every para-
graph.

Note that the length of the first line depends on a number of factors, including the width of
the page, the font size, etc. Thus, an ordinary HTML paragraph such as:

<P>This is a somewhat long HTML

paragraph that will be broken into several
lines. The first line will be identified

by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

the lines of which happen to be broken as follows:

THIS IS A SOMEWHAT LONG HTML PARAGRAPH THAT
will be broken into several lines. The first
line will be identified by a fictional tag
sequence. The other lines will be treated as
ordinary lines in the paragraph.

might be "rewritten" by user agents to include the fictional tag sequence for :first-line. This
fictional tag sequence helps to show how properties are inherited.

<P><P:first-line> This is a somewhat long HTML

paragraph that </P:first-line> will be broken into several
lines. The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the

paragraph.</P>

If a pseudo-element breaks up a real element, the desired effect can often be described by
a fictional tag sequence that closes and then re-opens the element. Thus, if we mark up the
previous paragraph with a SPAN element:

<P> This is a somewhat long HTML
paragraph that will be broken into several
lines. The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the
paragraph.</P>

the user agent could simulate start and end tags for SPAN when inserting the fictional tag
sequence for :first-line.

<P><P:first-1ine> This is a

somewhat long HTML

paragraph that will </P:first-1ine> be
broken into several

lines. The first line will be identified

— 81—

— 5 Selectors —

by a fictional tag sequence. The other lines
will be treated as ordinary lines in the
paragraph.</P>

The :first-line pseudo-element can only be attached to a block container element.P 113

The "first formatted line" of an element may occur inside a block-level descendant in the
same flow (i.e., a block-level descendant that is not positioned and not a float). E.g., the first
line of the DIV in <DIV><P>This line...</P></DIV> is the first line of the P (assuming
that both P and DIV are block-level).

The first line of a table-cell or inline-block cannot be the first formatted line of an ancestor
element. Thus, in <DIV><P STYLE="display: inline-
block">Hello
Goodbye</P> etcetera</DIV> the first formatted line of the DIV
is not the line "Hello".

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

Note that the first line of the P in this fragment: <p>
First. .. does not contain
any letters (assuming the default style for BR in HTML 4). The word "First" is not on the
first formatted line.

A UA should act as if the fictional start tags of the first-line pseudo-elements were nested
just inside the innermost enclosing block-level element. (Since CSS1 and CSS2 were silent
on this case, authors should not rely on this behavior.) Here is an example. The fictional tag
sequence for

<DIV>
<P>First paragraph</P>
<P>Second paragraph</P>
</DIV>

<DIV>
<P><DIV:first-line><P:first-line>First paragraph</P:first-1ine></DIV:first-line>
<P><P:first-line>Second paragraph</P:first-1line></P>

</DIV>

The :first-line pseudo-element is similar to an inline-level element, but with certain restric-
tions. The following properties apply to a :first-line pseudo-element: font properties, P-21 col-
or property, P29 background properties, P-?%° 'word-spacing', P-%?° 'letter-spacing', * 22® 'text-
decoration', P22 text-transform',P-??° and 'line-height'® 169 UAs may apply other properties
as well.

5.12.2 The :first-letter pseudo-element

The :first-letter pseudo-element must select the first letter of the first line of a block, if it is
not preceded by any other content (such as images or inline tables) on its line. The :first-
letter pseudo-element may be used for "initial caps" and "drop caps", which are common ty-
pographical effects. This type of initial letter is similar to an inline-level element if its

'float' P 12° property is 'none’, otherwise it is similar to a floated element.

— 82—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 5 Selectors —

These are the properties that apply to :first-letter pseudo-elements: font properties,'o'211

'text-decoration’, P-22° 'text-transform', P ?2% 'letter-spacing', - 22 '‘word-spacing'? 2?° (when
appropriate), 'Iine-height',p'169 'float', P 129 'vertical-align'p'170 (only if 'float" is 'none'), margin
properties, P 192 padding properties,? 1% border properties, ™ 1°¢ color property, P-?%* back-
ground properties. P-205 yAs may apply other properties as well. To allow UAs to render a
typographically correct drop cap or initial cap, the UA may choose a line-height, width and
height based on the shape of the letter, unlike for normal elements. CSS3 is expected to
have specific properties that apply to first-letter.

This example shows a possible rendering of an initial cap. Note that the 'line-height' that
is inherited by the first-letter pseudo-element is 1.1, but the UA in this example has comput-
ed the height of the first letter differently, so that it does not cause any unnecessary space
between the first two lines. Also note that the fictional start tag of the first letter is inside the
SPAN, and thus the font weight of the first letter is normal, not bold as the SPAN:

p { line-height: 1.1 }
p:first-letter { font-size: 3em; font-weight: normal }
span { font-weight: bold }

<p>Het hemelsche gerecht heeft zich ten lange lesten

Erbarremt over my en mijn benaeuwde vesten

En arme burgery, en op mijn volcx gebed

En dagelix geschrey de bange stad ontzet.

Hel hemelsche gerecht heeft zich ten lange lesten
Erbarremt over my en mijn benasuwde vesten

En arme burgery, en op mijn volcx gebed

En dagelix geschrey de bange stad ontzet.

The following CSS 2.1 will make a drop cap initial letter span about two lines:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Drop cap initial letter</TITLE>
<STYLE type="text/css">
P { font-size: 12pt; line-height: 1.2 }
P:first-letter { font-size: 200%; font-style: italic;
font-weight: bold; float: left }
SPAN { text-transform: uppercase }
</STYLE>
</HEAD>
<BODY>
<P>The first few words of an article
in The Economist.</P>
</BODY>
</HTML>

— 83—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 5 Selectors —

This example might be formatted as follows:

HE FIEST few
wordz of &an
article in the
Economist
The fictional tag sequence is:
<P>

<P:first-letter>
T
</P:first-letter>he first

few words of an article in the Economist.
</P>

Note that the :first-letter pseudo-element tags abut the content (i.e., the initial character),
while the :first-line pseudo-element start tag is inserted right after the start tag of the block
element.

In order to achieve traditional drop caps formatting, user agents may approximate font
sizes, for example to align baselines. Also, the glyph outline may be taken into account
when formatting.

Punctuation (i.e, characters defined in Unicode [UNICODE in the "open" (Ps),
"close" (Pe), "initial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that precedes or
follows the first letter should be included, as in:

7 A birdin
the hand
ig worth
twao in the bush,”
zays an old proverb,

The "first-letter' also applies if the first letter is in fact a digit, e.g., the "6" in "67 million
dollars is a lot of money."

The :first-letter pseudo-element applies to block container elements.
The :first-letter pseudo-element can be used with all such elements that contain text, or
that have a descendant in the same flow that contains text. A UA should act as if the fiction-
al start tag of the first-letter pseudo-element is just before the first text of the element, even

if that first text is in a descendant.
Here is an example. The fictional tag sequence for this HTML fragment:

p.113

<div>
<p>The first text.

_ 84 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 5 Selectors —

<div>
<p><div:first-letter><p:first-letter>T</...></...>he first text.

The first letter of a table-cell or inline-block cannot be the first letter of an ancestor ele-
ment. Thus, in <DIV><P STYLE="display: inline-
block">Hello
Goodbye</P> etcetera</DIV> the first letter of the DIV is not the
letter "H". In fact, the DIV does not have a first letter.

The first letter must occur on the first formatted line.? 82 For example, in this fragment:
<p>
First. .. the first line does not contain any letters and "first-letter' does not
match anything (assuming the default style for BR in HTML 4). In particular, it does not
match the "F" of "First."

If an element is a list item P 19° (‘display: list-item'), the "first-letter' applies to the first letter
in the principal box after the marker. UAs may ignore "first-letter' on list items with 'list-style-
position: inside'. If an element has ":before' or ":after' content, the "first-letter applies to the
first letter of the element including that content.

E.g., after the rule 'p:before {content: "Note: "}, the selector 'p:first-letter' matches the "N"
of "Note".

Some languages may have specific rules about how to treat certain letter combinations.
In Dutch, for example, if the letter combination "ij" appears at the beginning of a word, both
letters should be considered within the :first-letter pseudo-element.

If the letters that would form the first-letter are not in the same element, such as "'T" in
<p>'T.. ., the UA may create a first-letter pseudo-element from one of the elements,
both elements, or simply not create a pseudo-element.

Similarly, if the first letter(s) of the block are not at the start of the line (for example due to
bidirectional reordering), then the UA need not create the pseudo-element(s).

The following example illustrates how overlapping pseudo-elements may interact. The
first letter of each P element will be green with a font size of '24pt'. The rest of the first for-
matted line will be 'blue' while the rest of the paragraph will be 'red'.

p { color: red; font-size: 12pt }
p:first-letter { color: green; font-size: 200% }
p:first-line { color: blue }

<P>Some text that ends up on two lines</P>

Assuming that a line break will occur before the word "ends", the fictional tag sequence for
this fragment might be:

<pP>

<P:first-line>
<P:first-letter>

S

</P:first-letter>ome text that
</P:first-line>

ends up on two lines

</Pp>

— 85—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 5 Selectors —

Note that the :first-letter element is inside the :first-line element. Properties set on :first-line
are inherited by :first-letter, but are overridden if the same property is set on :first-letter.

5.12.3 The :before and :after pseudo-elements

The ":before' and ":after' pseudo-elements can be used to insert generated content before or
after an element's content. They are explained in the section on generated text.”-°

hl:before {content: counter (chapno, upper-roman) ". "}

When the first-letter and :first-line pseudo-elements are applied to an element having
content generated using :before and :after, they apply to the first letter or line of the element
including the generated content.

p.special:before {content: "Special! "}
p.special:first-letter {color: #f£fd800}

This will render the "S" of "Special!" in gold.

— 86 —

— 0 Assigning property values, Cascading, and Inheritance —

6 Assigning property values, Cascading, and

] Inheritance
G
5 Contents
E
g 6.1 Specified, computed, and actual values. 87
o 6.1.1 Specified values. 87
o 6.1.2Computed values. 88
H B.1.3Used Values.t 88
3 6.1.4 Actual values e 88
6.2 Inheritance e 88
6.2.1 The'inherit' value. e 89
6.3 The @IMPportrule e 89
B.4Thecascade. i e 90
6.4.1 Cascading order 91
6.4.2Importantrules 91
6.4.3 Calculating a selector's specificity L. 92
6.4.4 Precedence of non-CSS presentational hints 93

6.1 Specified, computed, and actual values

Once a user agent has parsed a document and constructed a document tree P-40 it must
assign, for every element in the tree, a value to every property that applies to the target me-
dia type P %4,

The final value of a property is the result of a four-step calculation: the value is deter-
mined through specification (the "specified value"), then resolved into a value that is used
for inheritance (the "computed value"), then converted into an absolute value if necessary
(the "used value"), and finally transformed according to the limitations of the local environ-
ment (the "actual value").

6.1.1 Specified values

User agents must first assign a specified value to each property based on the following
mechanisms (in order of precedence):

1. If the cascade® % results in a value, use it.

2. Otherwise, if the property is inherited P-88 and the element is not the root of the docu-
ment tree, use the computed value of the parent element.

3. Otherwise use the property's initial value. The initial value of each property is indicated
in the property's definition.

_ 87—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 0 Assigning property values, Cascading, and Inheritance —

6.1.2 Computed values

Specified values are resolved to computed values during the cascade; for example URIs
are made absolute and 'em' and 'ex' units are computed to pixel or absolute lengths. Com-
puting a value never requires the user agent to render the document.

The computed value of URIs that the UA cannot resolve to absolute URIs is the specified
value.

The computed value of a property is determined as specified by the Computed Value line
in the definition of the property. See the section on inheritance P-88 for the definition of com-
puted values when the specified value is 'inherit'.

The computed value exists even when the property does not apply, as defined by the 'Ap-
plies To'? 2 line. However, some properties may define the computed value of a property
for an element to depend on whether the property applies to that element.

6.1.3 Used values

Computed values are processed as far as possible without formatting the document. Some
values, however, can only be determined when the document is being laid out. For exam-
ple, if the width of an element is set to be a certain percentage of its containing block, the
width cannot be determined until the width of the containing block has been determined.
The used value is the result of taking the computed value and resolving any remaining de-
pendencies into an absolute value.

6.1.4 Actual values

A used value is in principle the value used for rendering, but a user agent may not be able
to make use of the value in a given environment. For example, a user agent may only be
able to render borders with integer pixel widths and may therefore have to approximate the
computed width, or the user agent may be forced to use only black and white shades in-
stead of full color. The actual value is the used value after any approximations have been
applied.

6.2 Inheritance

Some values are inherited by the children of an element in the document tree” #°, as de-
scribed aboveP 8. Each property defines P-25 whether it is inherited or not.
Suppose there is an H1 element with an emphasizing element (EM) inside:

<H1>The headline is important!</H1>

If no color has been assigned to the EM element, the emphasized "is" will inherit the color

of the parent element, so if H1 has the color blue, the EM element will likewise be in blue.
When inheritance occurs, elements inherit computed values. The computed value from

the parent element becomes both the specified value and the computed value on the child.
For example, given the following style sheet:

— 88 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 0 Assigning property values, Cascading, and Inheritance —

body { font-size: 10pt }
hl { font-size: 130% }

and this document fragment:

<BODY>
<H1>A large heading</H1>
</BODY>

the 'font-size' property for the H1 element will have the computed value '13pt' (130% times
10pt, the parent's value). Since the computed value of 'font-size' P-219 is inherited, the EM el-
ement will have the computed value '13pt' as well. If the user agent does not have the 13pt
font available, the actual value of '‘font-size'P-2'° for both H1 and EM might be, for example,
"12pt'.

Note that inheritance follows the document tree and is not intercepted by anonymous
boxes.P 113

6.2.1 The 'inherit' value

Each property may also have a cascaded value of 'inherit', which means that, for a given el-
ement, the property takes the same specified value as the property for the element's parent.
The 'inherit' value can be used to enforce inheritance of values, and it can also be used on
properties that are not normally inherited.

If the 'inherit' value is set on the root element, the property is assigned its initial value.

In the example below, the 'color'P2%% and 'background'” 09 properties are set on the
BODY element. On all other elements, the 'color' value will be inherited and the background
will be transparent. If these rules are part of the user's style sheet, black text on a white
background will be enforced throughout the document.

body {
color: black !important;
background: white !important;

}

* |
color: inherit !important;
background: transparent !important;

}

6.3 The @import rule

The ‘@import' rule allows users to import style rules from other style sheets. In CSS 2.1,
any @import rules must precede all other rules (except the @charset rule, if present). See
the section on parsing P-50 for when user agents must ignore @import rules. The '@import’
keyword must be followed by the URI of the style sheet to include. A string is also allowed;
it will be interpreted as if it had url(...) around it.

89

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 0 Assigning property values, Cascading, and Inheritance —

The following lines are equivalent in meaning and illustrate both '@import' syntaxes (one
with "url()" and one with a bare string):

@import "mystyle.css";
@import url ("mystyle.css");

So that user agents can avoid retrieving resources for unsupported media types P-94 au-
thors may specify media-dependent @import rules. These conditional imports specify
comma-separated media types after the URI.

The following rules illustrate how @import rules can be made media-dependent:

@import url ("fineprint.css") print;
@import url ("bluish.css") projection, tv;

In the absence of any media types, the import is unconditional. Specifying 'all' for the
medium has the same effect. The import only takes effect if the target medium matches the
media list.

A target medium matches a media list if one of the items in the media list is the target
medium or 'all'.

Note that Media Queries [MEDIAQ]'O'284 extends the syntax of media lists and the
definition of matching.

When the same style sheet is imported or linked to a document in multiple places, user
agents must process (or act as though they do) each link as though the link were to a sepa-
rate style sheet.

6.4 The cascade

Style sheets may have three different origins: author, user, and user agent.

« Author. The author specifies style sheets for a source document according to the con-
ventions of the document language. For instance, in HTML, style sheets may be included
in the document or linked externally.

» User: The user may be able to specify style information for a particular document. For ex-
ample, the user may specify a file that contains a style sheet or the user agent may pro-
vide an interface that generates a user style sheet (or behaves as if it did).

» User agent: Conforming user agents P-42 must apply a default style sheet (or behave as if
they did). A user agent's default style sheet should present the elements of the document
language in ways that satisfy general presentation expectations for the document lan-
guage (e.qg., for visual browsers, the EM element in HTML is presented using an italic
font). See A sample style sheet for HTML P-4%2 for a recommended default style sheet for
HTML documents.

Note that the user may modify system settings (e.g., system colors) that affect the

default style sheet. However, some user agent implementations make it impossible
to change the values in the default style sheet.

—90—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 0 Assigning property values, Cascading, and Inheritance —

Style sheets from these three origins will overlap in scope, and they interact according to
the cascade.

The CSS cascade assigns a weight to each style rule. When several rules apply, the one
with the greatest weight takes precedence.

By default, rules in author style sheets have more weight than rules in user style sheets.
Precedence is reversed, however, for "limportant” rules. All user and author rules have
more weight than rules in the UA's default style sheet.

6.4.1 Cascading order

To find the value for an element/property combination, user agents must apply the following
sorting order:

1. Find all declarations that apply to the element and property in question, for the target
media type® 9 Declarations apply if the associated selector matches® % the element
in question and the target medium matches the media list on all @media rules contain-
ing the declaration and on all links on the path through which the style sheet was
reached.

2. Sort according to importance (normal or important) and origin (author, user, or user
agent). In ascending order of precedence:

1. user agent declarations

2. user normal declarations

3. author normal declarations
4. author important declarations
5. user important declarations

3. Sort rules with the same importance and origin by specificity of selector: more spe-
cific selectors will override more general ones. Pseudo-elements and pseudo-classes
are counted as normal elements and classes, respectively.

4. Finally, sort by order specified: if two declarations have the same weight, origin and
specificity, the latter specified wins. Declarations in imported style sheets are consid-
ered to be before any declarations in the style sheet itself.

p.92

Apart from the "limportant" setting on individual declarations, this strategy gives author's
style sheets higher weight than those of the reader. User agents must give the user the abil-
ity to turn off the influence of specific author style sheets, e.g., through a pull-down menu.
Conformance to UAAG 1.0 checkpoint 4.14 satisfies this condition [UAAG1O]'°'283.

6.4.2 limportant rules

CSS attempts to create a balance of power between author and user style sheets. By de-
fault, rules in an author's style sheet override those in a user's style sheet (see cascade rule
3).
However, for balance, an "limportant" declaration (the delimiter token "!" and keyword
"important" follow the declaration) takes precedence over a normal declaration. Both author
and user style sheets may contain "limportant" declarations, and user "limportant" rules
override author "limportant" rules. This CSS feature improves accessibility of documents by

—91—

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 0 Assigning property values, Cascading, and Inheritance —

giving users with special requirements (large fonts, color combinations, etc.) control over
presentation.

Declaring a shorthand property (e.g., 'background'? 209) to be "limportant” is equivalent to
declaring all of its sub-properties to be "limportant”.

The first rule in the user's style sheet in the following example contains an "limportant"
declaration, which overrides the corresponding declaration in the author's style sheet. The
second declaration will also win due to being marked "limportant". However, the third rule in
the user's style sheet is not "limportant" and will therefore lose to the second rule in the au-
thor's style sheet (which happens to set style on a shorthand property). Also, the third au-
thor rule will lose to the second author rule since the second rule is "limportant”. This shows
that "limportant" declarations have a function also within author style sheets.

/* From the user's style sheet */

p { text-indent: lem ! important }

p { font-style: italic ! important }
p { font-size: 18pt }

/* From the author's style sheet */

p { text-indent: 1.5em !important }

p { font: normal 12pt sans-serif !important }
p { font-size: 24pt }

6.4.3 Calculating a selector's specificity

A selector's specificity is calculated as follows:

» count 1 if the declaration is from is a 'style' attribute rather than a rule with a selector, 0
otherwise (= a) (In HTML, values of an element's "style" attribute are style sheet rules.
These rules have no selectors, so a=1, b=0, ¢c=0, and d=0.)

» count the number of ID attributes in the selector (= b)

» count the number of other attributes and pseudo-classes in the selector (= ¢)

» count the number of element names and pseudo-elements in the selector (= d)

The specificity is based only on the form of the selector. In particular, a selector of the form
"[id=p33]" is counted as an attribute selector (a=0, b=0, c=1, d=0), even if the id attribute is
defined as an "ID" in the source document's DTD.

Concatenating the four numbers a-b-c-d (in a number system with a large base) gives the
specificity.

Some examples:

* {} /* a=0 b=0 c=0 d=0 -> specificity = 0,0,0,0 */
11i {y /* a=0 b=0 c¢=0 d=1 -> specificity = 0,0,0,1 */
li:first-line {} /* a=0 b=0 c¢=0 d=2 -> specificity = 0,0,0,2 */
ul 1i {} /* a=0 b=0 c¢=0 d=2 -> specificity = 0,0,0,2 */
ul ol+11i {} /* a=0 b=0 c¢=0 d=3 -> specificity = 0,0,0,3 */
hl + *[rel=up]{} /* a=0 b=0 c=1 d=1 -> specificity = 0,0,1,1 */
ul ol li.red {} /* a=0 b=0 c=1 d=3 -> specificity = 0,0,1,3 */
li.red.level {} /* a=0 b=0 c=2 d=1 -> specificity = 0,0,2,1 */

9

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— 0 Assigning property values, Cascading, and Inheritance —

#x34y {} /* a=0 b=1 c=0 d=0 -> specificity = 0,1,0,0 */
style="" /* a=1 b=0 c=0 d=0 -> specificity = 1,0,0,0 */
<HEAD>
<STYLE type="text/css">
#x97z { color: red }
</STYLE>
</HEAD>
<BODY>
<P ID=x97z style="color: green">
</BODY>

In the above example, the color of the P element would be green. The declaration in the
"style" attribute will override the one in the STYLE element because of cascading rule 3,
since it has a higher specificity.

6.4.4 Precedence of non-CSS presentational hints

The UA may choose to honor presentational attributes in an HTML source document. If so,
these attributes are translated to the corresponding CSS rules with specificity equal to 0O,
and are treated as if they were inserted at the start of the author style sheet. They may
therefore be overridden by subsequent style sheet rules. In a transition phase, this policy
will make it easier for stylistic attributes to coexist with style sheets.

For HTML, any attribute that is not in the following list should be considered presentation-
al: abbr, accept-charset, accept, accesskey, action, alt, archive, axis, charset, checked, cite,
class, classid, code, codebase, codetype, colspan, coords, data, datetime, declare, defer,
dir, disabled, enctype, for, headers, href, hreflang, http-equiv, id, ismap, label, lang, lan-
guage, longdesc, maxlength, media, method, multiple, name, nohref, object, onblur, on-
change, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup, onload, onload, on-
mousedown, onmousemove, onmouseout, onmouseover, onmouseup, onreset, onselect,
onsubmit, onunload, onunload, profile, prompt, readonly, rel, rev, rowspan, scheme, scope,
selected, shape, span, src, standby, start, style, summary, title, type (except on LI, OL and
UL elements), usemap, value, valuetype, version.

For other languages, all document language-based styling must be translated to the cor-
responding CSS and either enter the cascade at the user agent level or, as with HTML pre-
sentational hints, be treated as author level rules with a specificity of zero placed at the start
of the author style sheet.

The following user style sheet would override the font weight of 'b' elements in all docu-
ments, and the color of 'font' elements with color attributes in XML documents. It would not
affect the color of any 'font' elements with color attributes in HTML documents:

b { font-weight: normal; }
font[color] { color: orange; }

The following, however, would override the color of font elements in all documents:

font[color] { color: orange ! important; }

—93_

— 7 Media types —

/7 Media types

c
o

g Contents

e

@ 7.1 Introduction to mediatypes 94
E 7.2 Specifying media-dependent stylesheets 94
o 7.21The @mediarule. 95
H 7.3 Recognized mediatypes 95
E 7.3. 1 Media groUPS . . . oo 96
(o]

2 7.1 Introduction to media types

One of the most important features of style sheets is that they specify how a document is to
be presented on different media: on the screen, on paper, with a speech synthesizer, with a
braille device, etc.

Certain CSS properties are only designed for certain media (e.g., the 'page-break-
before'P- 199 property only applies to paged media). On occasion, however, style sheets for
different media types may share a property, but require different values for that property.
For example, the 'font-size'P-219 property is useful both for screen and print media. The two
media types are different enough to require different values for the common property; a
document will typically need a larger font on a computer screen than on paper. Therefore, it
is necessary to express that a style sheet, or a section of a style sheet, applies to certain
media types.

7.2 Specifying media-dependent style sheets

There are currently two ways to specify media dependencies for style sheets:

» Specify the target medium from a style sheet with the @media or @import at-rules.

@import url ("fancyfonts.css") screen;
@media print {
/* style sheet for print goes here */

}

+ Specify the target medium within the document language. For example, in HTML 4
([HTML4]P-282) the "media" attribute on the LINK element specifies the target media of
an external style sheet:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
<HTML>
<HEAD>
<TITLE>Link to a target medium</TITLE>
<LINK REL="stylesheet" TYPE="text/css"
MEDIA="print, handheld" HREF="foo.css">
</HEAD>
<BODY>

—94 _

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 7 Media types —

<P>The body...
</BODY>
</HTML>

The @import'o'89 rule is defined in the chapter on the cascade P87,

7.2.1 The @media rule

An @media rule specifies the target media typesp'95 (separated by commas) of a set of
statements P *4 (delimited by curly braces). Invalid statements must be ignored per 4.1.7
"Rule sets, declaration blocks, and selectors"P-°" and 4.2 "Rules for handling parsing er-
rors."P%3 The @media construct allows style sheet rules for various media in the same style
sheet:

@media print {

body { font-size: 10pt }
}
@media screen {

body { font-size: 13px }
}

@media screen, print {
body { line-height: 1.2 }
}

Style rules outside of @media rules apply to all media types that the style sheet applies to.
At-rules inside @media are invalid in CSS2.1.

7.3 Recognized media types

The names chosen for CSS media types reflect target devices for which the relevant prop-
erties make sense. In the following list of CSS media types the names of media types are
normative, but the descriptions are informative. Likewise, the "Media" field in the description
of each property is informative.
all
Suitable for all devices.
braille
Intended for braille tactile feedback devices.
embossed
Intended for paged braille printers.
handheld
Intended for handheld devices (typically small screen, limited bandwidth).
print
Intended for paged material and for documents viewed on screen in print preview
mode. Please consult the section on paged media P-0 for information about formatting
issues that are specific to paged media.

—95_

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
§;

— 7 Media types —

projection
Intended for projected presentations, for example projectors. Please consult the section
on paged media® ? for information about formatting issues that are specific to paged
media.

screen
Intended primarily for color computer screens.

speech
Intended for speech synthesizers. Note: CSS2 had a similar media type called 'aural’
for this purpose. See the appendix on aural style sheets for details.

tty
Intended for media using a fixed-pitch character grid (such as teletypes, terminals, or
portable devices with limited display capabilities). Authors should not use pixel units p-58
with the "tty" media type.

tv
Intended for television-type devices (low resolution, color, limited-scrollability screens,
sound available).

Media type names are case-insensitive.

Media types are mutually exclusive in the sense that a user agent can only support one
media type when rendering a document. However, user agents may use different media
types on different canvases. For example, a document may (simultaneously) be shown in
'screen' mode on one canvas and 'print' mode on another canvas.

Note that a multimodal media type is still only one media type. The 'tv' media type, for ex-
ample, is a multimodal media type that renders both visually and aurally to a single canvas.

@media and @import rules with unknown media types (that are nonetheless valid identi-
fiers) are treated as if the unknown media types are not present. If an @media/@import rule
contains a malformed media type (not an identifier) then the statement is invalid.

Note: Media Queries supercedes this error handling.

For example, in the following snippet, the rule on the P element applies in 'screen' mode
(even though the '3D' media type is not known).

@media screen, 3D {
P { color: green; }

}

Note. Future updates of CSS may extend the list of media types. Authors should not
rely on media type names that are not yet defined by a CSS specification.

7.3.1 Media groups

This section is informative, not normative.

Each CSS property definition specifies which media types the property applies to. Since
properties generally apply to several media types, the "Applies to media" section of each
property definition lists media groups rather than individual media types. Each property ap-
plies to all media types in the media groups listed in its definition.

CSS 2.1 defines the following media groups:

—96—

aural.html

— 7 Media types —

continuous or paged.
visual, audio, speech, or tactile.

E grid (for character grid devices), or bitmap.
- * interactive (for devices that allow user interaction), or static (for those that do not).
E « all (includes all media types)
E The following table shows the relationships between media groups and media types:
(o]
E Relationship between media groups and media
U types
g _I:_ﬂ;:;z Media Groups
continuous/ visual/audio/speech/tac- grid/ interactive/stat-
paged tile bitmap ic
| braille || continuous || tactile | grid | both | |
| embossed || paged | tactile | grid | static |
| handheld || both | visual, audio, speech || both || both |
| print || paged | visual | bitmap || static |
| projection || paged | visual | bitmap || interactive |
| screen || continuous || visual, audio | bitmap || both |
| speech | continuous || speech I NA both |
| tty || continuous | visual | grid | both |
| tv | both | visual, audio | bitmap || both |

—-97 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

8 Box model

Contents

8.1 BoX dimensions 98

8.2 Example of margins, padding, andborders L. 100

8.3 Margin properties: 'margin-top’, 'margin-right', ‘'margin-bottom', ‘'margin-left', and 'mar-

IN e 102
8.3.1 Collapsing Margins e 103

8.4 Padding properties: 'padding-top’, 'padding-right', 'padding-bottom’, 'padding-left’, and

Padding 105

8.5 Border properties 106
8.5.1 Border width: 'border-top-width', 'border-right-width', 'border-bottom-width',
'‘border-left-width', and 'border-width' L 106
8.5.2 Border color: 'border-top-color', 'border-right-color', 'border-bottom-color', 'border-
left-color', and 'border-color' 108
8.5.3 Border style: 'border-top-style', 'border-right-style', 'border-bottom-style', 'border-
left-style', and 'border-style' 109
8.5.4 Border shorthand properties: 'border-top’, 'border-right', 'border-bottom’, 'border-
left', and 'border 110

8.6 The box model for inline elements in bidirectional context. 111

The CSS box model describes the rectangular boxes that are generated for elements in
the document tree™*° and laid out according to the visual formatting model® 112,

8.1 Box dimensions

Each box has a content area (e.g., text, an image, etc.) and optional surrounding padding,
border, and margin areas; the size of each area is specified by properties defined below.
The following diagram shows how these areas relate and the terminology used to refer to
pieces of margin, border, and padding:

_98 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

r ™ Margin (Transparent) I
I TB Border I
I ’_ TP Padding I I
' |
|

ILM LB| LP Content RP |RB RMI
| | | |
I | BP | |
I |_ _______________ — I
| BB |
| BM |
L e e e e e I

—_——- Margin cdge
— Border edge
— — — Padding edge

— Content edge

The margin, border, and padding can be broken down into top, right, bottom, and left seg-
ments (e.g., in the diagram, "LM" for left margin, "RP" for right padding, "TB" for top border,
etc.).

The perimeter of each of the four areas (content, padding, border, and margin) is called
an "edge", so each box has four edges:
content edge or inner edge

The content edge surrounds the rectangle given by the width and height of the box,
which often depend on the element's rendered contentP 4. The four content edges de-
fine the box's content box.
padding edge
The padding edge surrounds the box padding. If the padding has 0 width, the padding
edge is the same as the content edge. The four padding edges define the box's
padding box.
border edge
The border edge surrounds the box's border. If the border has 0 width, the border edge
is the same as the padding edge. The four border edges define the box's border box.
margin edge or outer edge
The margin edge surrounds the box margin. If the margin has 0 width, the margin edge
is the same as the border edge. The four margin edges define the box's margin box.

Each edge may be broken down into a top, right, bottom, and left edge.

The dimensions of the content area of a box — the content width and content height —
depend on several factors: whether the element generating the box has the 'width'P 1%% or
'height'®: 161 property set, whether the box contains text or other boxes, whether the box is a
table, etc. Box widths and heights are discussed in the chapter on visual formatting model
details P 1°2,

—99 —

visudet.html#Computing_widths_and_margins
visudet.html#Computing_heights_and_margins

— &8 Box model —

The background style of the content, padding, and border areas of a box is specified by

the 'background'p'209 property of the generating element. Margin backgrounds are always
E transparent.
ko
o . .
5 8.2 Example of margins, padding, and borders
£
g This example illustrates how margins, padding, and borders interact. The example HTML
b document:
o’
U <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
o, <HTML>
3 <HEAD>

<TITLE>Examples of margins, padding, and borders</TITLE>
<STYLE type="text/css">
UL {
background: yellow;
margin: 12px 12px 12px 12px;
padding: 3px 3px 3px 3px;
/* No borders set */

}

LI {
color: white; /* text color is white */
background: blue; /* Content, padding will be blue */

margin: 12px 12px 12px 12px;
padding: 12px Opx 12px 12px; /* Note Opx padding right */
list-style: none /* no glyphs before a list item */
/* No borders set */
}
LI.withborder {
border-style: dashed;
border-width: medium; /* sets border width on all sides */
border-color: lime;
}
</STYLE>
</HEAD>
<BODY>

First element of list
<LI class="withborder">Second element of list is
a bit longer to illustrate wrapping.

</BODY>
</HTML>

results in a document tree ™% with (among other relationships) a UL element that has two
LI children.

The first of the following diagrams illustrates what this example would produce. The sec-
ond illustrates the relationship between the margins, padding, and borders of the UL ele-
ments and those of its children LI elements. (Image is not to scale.)

- 100 -

c
0
e
o
=
@
=
£
O
¥
@
o’
9
"
2

— &8 Box model —

First element of list

: Second element of list is &
| bit longer to lllustrate
| wrapping.

Content width of LI

First element of list

Second element of list is g
bit In:ungar to illustrate

£ ed margin is
max(12px, 18px)=12px

wrapping.

LI margins
| UL padding

LIL margins

Conternt width of UL

Box width of UL

Note that:

The content widthP % for each LI box is calculated top-down; the containing blockP 113 for
each LI box is established by the UL element.

The margin box height of each LI box depends on its content height® 9 plus top and bot-
tom padding, borders, and margins. Note that vertical margins between the LI boxes col-
lapse.P 103

The right padding of the LI boxes has been set to zero width (the 'padding
The effect is apparent in the second illustration.

The margins of the LI boxes are transparent — margins are always transparent — so the
background color (yellow) of the UL padding and content areas shines through them.
The second LI element specifies a dashed border (the 'border-style""109 property).

'P-106 hroperty).

- 101 -

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

8.3 Margin properties: 'margin-top'® 1%, 'margin-right'P- 192,

'margin-bottom' P 192 'margin-left'?- 12, and 'margin'?- 1%

Margin properties specify the width of the margin area P-98 of a box. The 'margin'p'103 short-
hand property sets the margin for all four sides while the other margin properties only set
their respective side. These properties apply to all elements, but vertical margins will not
have any effect on non-replaced inline elements.
The properties defined in this section refer to the <margin-width> value type, which may
take one of the following values:
<length>P->°
Specifies a fixed width.
<percentage>P-%8
The percentage is calculated with respect to the width of the generated box's containing
blockP '3, Note that this is true for 'margin-top'? 12 and 'margin-bottom'? %2 as
well. If the containing block's width depends on this element, then the resulting layout
is undefined in CSS 2.1.
auto
See the section on calculating widths and margins for behavior.
Negative values for margin properties are allowed, but there may be implementation-
specific limits.

‘'margin-top', ‘'margin-bottom’

Value: <margin-width>P1%2 | inherit?-8°
Initial: 0
.) all elements except elements with table display types other than
Applies to. table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media: visualP- %7

Computed value: the percentage as specified or the absolute length
These properties have no effect on non-replaced inline elements.

'margin-right’, 'margin-left'

Value: <margin-width>P1%2 | inheritP-8°
Initial: 0
.) all elements except elements with table display types other than
Applies to. table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media: visualP- %7

Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left margin of a box.

hl { margin-top: Z2em }

-102 -

visudet.html#Computing_widths_and_margins

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

'margin’
Value: <margin-width>P1%2{1 4} | inheritP-8°
Initial: see individual properties
Applies to: all elements except elements with table display types other than
' table-caption, table and inline-table
Inherited: no
Percentages: refer to width of containing block
Media: visualP %7

Computed value: see individual properties

property is a shorthand property for setting 'margin-top , 'margin-
right'P- 102 'margin-bottom'p'mz, and 'margin-left"o'102 at the same place in the style sheet.

If there is only one component value, it applies to all sides. If there are two values, the top
and bottom margins are set to the first value and the right and left margins are set to the
second. If there are three values, the top is set to the first value, the left and right are set to
the second, and the bottom is set to the third. If there are four values, they apply to the top,

right, bottom, and left, respectively.

body { margin: 2em } /* all margins set to 2em */
body { margin: lem 2em } /* top & bottom = lem, right & left = 2em */
body { margin: lem 2em 3em } /* top=lem, right=2em, bottom=3em, left=2em */

The last rule of the example above is equivalent to the example below:

body {
margin-top: lem;
margin-right: Z2em;
margin-bottom: 3em;
margin-left: 2em; /* copied from opposite side (right) */

}
8.3.1 Collapsing margins

In CSS, the adjoining margins of two or more boxes (which might or might not be siblings)
can combine to form a single margin. Margins that combine this way are said to collapse,
and the resulting combined margin is called a collapsed margin.

Adjoining vertical margins collapse, except:

* Margins of the root element's box do not collapse.

« If the top and bottom margins of an element with clearance P-131 are adjoining, its margins
collapse with the adjoining margins of following siblings but that resulting margin does not
collapse with the bottom margin of the parent block.

Horizontal margins never collapse.
Two margins are adjoining if and only if:

* both belong to in-flow block-level boxes P-113 that participate in the same block formatting
contextP 121

-103 -

— &8 Box model —

* no line boxes, no clearance, no padding and no border separate them (Note that cer-
tain zero-height line boxes 22 (see 9.4.2P122) are ignored for this purpose.)
* both belong to vertically-adjacent box edges, i.e. form one of the following pairs:
> top margin of a box and top margin of its first in-flow child
> bottom margin of box and top margin of its next in-flow following sibling
> bottom margin of a last in-flow child and bottom margin of its parent if the parent has
'auto’ computed height
> top and bottom margins of a box that does not establish a new block formatting context
and that has zero computed 'min-height'p'166, zero or 'auto’ computed 'height'p'161, and
no in-flow children

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

A collapsed margin is considered adjoining to another margin if any of its component mar-
gins is adjoining to that margin.

Note. Adjoining margins can be generated by elements that are not related as sib-
lings or ancestors.

Note the above rules imply that:

+ Margins between a floated” 125 hox and any other box do not collapse (not even be-
tween a float and its in-flow children).

» Margins of elements that establish new block formatting contexts (such as floats and
elements with 'overflow'P 172 other than 'visible') do not collapse with their in-flow
children.

» Margins of absolutely positioned P-134 hoxes do not collapse (not even with their in-
flow children).

* Margins of inline-block boxes do not collapse (not even with their in-flow children).

* The bottom margin of an in-flow block-level element always collapses with the top
margin of its next in-flow block-level sibling, unless that sibling has clearance.

» The top margin of an in-flow block element collapses with its first in-flow block-level
child's top margin if the element has no top border, no top padding, and the child has
no clearance.

* The bottom margin of an in-flow block box with a 'height' of 'auto' and a 'min-
height'?- 166 of zero collapses with its last in-flow block-level child's bottom margin if
the box has no bottom padding and no bottom border and the child's bottom margin
does not collapse with a top margin that has clearance.

+ A box's own margins collapse if the 'min-height'?- 166 property is zero, and it has nei-
ther top or bottom borders nor top or bottom padding, and it has a 'height":"161 of ei-
ther O or 'auto’, and it does not contain a line box, and all of its in-flow children's mar-
gins (if any) collapse.

p.161

When two or more margins collapse, the resulting margin width is the maximum of the
collapsing margins' widths. In the case of negative margins, the maximum of the absolute
values of the negative adjoining margins is deducted from the maximum of the positive ad-
joining margins. If there are no positive margins, the maximum of the absolute values of the
adjoining margins is deducted from zero.

~ 104

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

If the top and bottom margins of a box are adjoining, then it is possible for margins to col-
lapse through it. In this case, the position of the element depends on its relationship with the
other elements whose margins are being collapsed.

+ If the element's margins are collapsed with its parent's top margin, the top border edge of
the box is defined to be the same as the parent's.

+ Otherwise, either the element's parent is not taking part in the margin collapsing, or only
the parent's bottom margin is involved. The position of the element's top border edge is
the same as it would have been if the element had a non-zero bottom border.

Note that the positions of elements that have been collapsed through have no effect on the
positions of the other elements with whose margins they are being collapsed; the top border
edge position is only required for laying out descendants of these elements.

8.4 Padding properties: 'padding-top’p'105, 'padding-right'p-105,

'padding-bottom'p'105, 'padding-left'p'105, and 'padding'p-106

The padding properties specify the width of the padding area P-98 of a box. The
'padding"”'1 ® shorthand property sets the padding for all four sides while the other padding
properties only set their respective side.
The properties defined in this section refer to the <padding-width> value type, which
may take one of the following values:
<length>P-%°
Specifies a fixed width.
<percentage>P-%8
The percentage is calculated with respect to the width of the generated box's containing
blockP 13, even for 'padding-top'? 1% and 'padding-bottom'? 1% If the containing
block's width depends on this element, then the resulting layout is undefined in
CSS 2.1.
Unlike margin properties, values for padding values cannot be negative. Like margin
properties, percentage values for padding properties refer to the width of the generated
box's containing block.

'padding-top’, 'padding-right’, ‘padding-bottom’, 'padding-left'

Value: <padding-width>"1%° | inheritP-8°

Initial: 0

Applies to: all elements except table-row-group, table-header-group, table-
' footer-group, table-row, table-column-group and table-column

Inherited: no

Percentages: refer to width of containing block

Media: visualP %7

Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left padding of a box.

blockquote { padding-top: 0.3em }

- 105 -

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

'padding’
Value: <padding-width>P-19%{1 4} | inheritP-8°
Initial: see individual properties
Applies to: all elements except table-row-group, table-header-group, table-
' footer-group, table-row, table-column-group and table-column
Inherited: no
Percentages: refer to width of containing block
Media: visualP %7

Computed value: see individual properties

'p. 106 1p. 105

The 'padding
'padding-right'® 108, 'padding-bottom
style sheet.

If there is only one component value, it applies to all sides. If there are two values, the top
and bottom paddings are set to the first value and the right and left paddings are set to the
second. If there are three values, the top is set to the first value, the left and right are set to
the second, and the bottom is set to the third. If there are four values, they apply to the top,
right, bottom, and left, respectively.

The surface color or image of the padding area is specified via the 'background'

property:

property is a shorthand property for setting 'padding-top
'P-105 "and 'padding-left'® 1%° at the same place in the

p.209

hl {
background: white;
padding: lem 2em;
}

The example above specifies a '"lem' vertical padding ('paddin%-top'p' 198 and 'padding-
bottom'?-1%°) and a '2em’ horizontal padding (‘padding-right'?-'°° and 'padding-left'P- 1%).
The 'em'’ unit is relative® *® to the element's font size: "lem' is equal to the size of the font in
use.

8.5 Border properties

The border properties specify the width, color, and style of the border area P-98 of a box.
These properties apply to all elements.

Note. Notably for HTML, user agents may render borders for certain user interface
elements (e.g., buttons, menus, etc.) differently than for "ordinary" elements.

8.5.1 Border width: 'border-top-width'® "7, "border-right-width'® '’ border-
bottom-width'P 1%, 'border-left-width'P %7 and 'border-width'P- 107

The border width properties specify the width of the border area P-9 The properties defined
in this section refer to the <border-width> value type, which may take one of the following
values:
thin

A thin border.

- 106 —

— &8 Box model —

medium
A medium border.
5 thick
- A thick border.
- <length>P-5°
E The border's thickness has an explicit value. Explicit border widths cannot be negative.
= The interpretation of the first three values depends on the user agent. The following rela-
S tionships must hold, however:
- 'thin' <='medium’ <= "thick'.
U Furthermore, these widths must be constant throughout a document.
"
3 '‘border-top-width’, ‘border-right-width’, ‘border-bottom-width', 'border-left-width'
Value: <border-width>P- 1% | inheritP-8°
Initial: medium
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visualP %7

Computed value: absolute length; '0' if the border style is 'none' or 'hidden'

These properties set the width of the top, right, bottom, and left border of a box.

‘border-width'
Value: <border-width> " 1981 4} | inheritP-8°
Initial: see individual properties
Applies to: all elements
Inherited: no
Percentages: N/A
Media: visualP %7

Computed value: see individual properties
This property is a shorthand property for setting 'border-top-width'® 107, 'border-right-
width'® %7 "border-bottom-width'® %7, and 'border-left-width'® %7 at the same place in the
style sheet.

If there is only one component value, it applies to all sides. If there are two values, the top
and bottom borders are set to the first value and the right and left are set to the second. If
there are three values, the top is set to the first value, the left and right are set to the sec-
ond, and the bottom is set to the third. If there are four values, they apply to the top, right,
bottom, and left, respectively.

In the examples below, the comments indicate the resulting widths of the top, right, bot-
tom, and left borders:

hl { border-width: thin } /* thin thin thin thin */
hl { border-width: thin thick } /* thin thick thin thick */
hl { border-width: thin thick medium } /* thin thick medium thick */

- 107 -

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

'p. 108 'p. 108

8.5.2 Border color: 'border-top-color , 'border-right-color , 'border-

bottom-color'? 1% ‘border-left-color' ™ 1% and 'border-color'P- 198
The border color properties specify the color of a box's border.

'border-top-color’, 'border-right-color', ‘border-bottom-color’, ‘border-left-color’

Value: <color>P-®0 | transparent | inheritP-8°
Initial: the value of the 'color' property
Applies to: all elements

Inherited: no

Percentages: N/A

Media: visual P’

when taken from the 'color' property, the computed value of 'color’;

Computed value: otherwise, as specified

'border-color’

Value: [<color>P-®0 | transparent [{1,4} | inheritP-8°
Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visual P’

Computed value: see individual properties
The 'border-color'?1%8
ing meanings:
<color>P-8

Specifies a color value.
transparent
The border is transparent (though it may have width).

The 'border-color'? 128 property can have from one to four component values, and the val-
ues are set on the different sides as for 'border-width'P- 197,

If an element's border color is not specified with a border property, user agents must use
the value of the element's 'color'P-2%4 property as the computed value P-88 for the border col-
or.

In this example, the border will be a solid black line.

property sets the color of the four borders. Values have the follow-

p A
color: black;
background: white;
border: solid;

- 108 —

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

'p. 109 'p. 109

8.5.3 Border st¥lg: 'border-top-style , 'border-right-style , 'border-

bottom-style'® 1%°, 'border-left-style'™ %% and 'border-style'P- 109

The border style properties specify the line style of a box's border (solid, double, dashed,
etc.). The properties defined in this section refer to the <border-style> value type, which
may take one of the following values:
none
No border; the computed border width is zero.
hidden
Same as 'none’, except in terms of border conflict resolution P-254 for table ele-
mentsP 233,
dotted
The border is a series of dots.
dashed
The border is a series of short line segments.
solid
The border is a single line segment.
double
The border is two solid lines. The sum of the two lines and the space between them
equals the value of 'border-width'P 1%7.
groove
The border looks as though it were carved into the canvas.
ridge
The opposite of 'groove': the border looks as though it were coming out of the canvas.
inset
The border makes the box look as though it were embedded in the canvas.
outset
The opposite of 'inset': the border makes the box look as though it were coming out of
the canvas.

All borders are drawn on top of the box's background. The color of borders drawn for val-
ues of 'groove’, 'ridge’, 'inset’, and 'outset' depends on the element's border color proper-
tiesP 1% put UAs may choose their own algorithm to calculate the actual colors used. For
instance, if the 'border-color' has the value 'silver', then a UA could use a gradient of colors
from white to dark gray to indicate a sloping border.

'border-top-style’, 'border-right-style', 'border-bottom-style’, 'border-left-style'

Value: <border-style>P 1% | inheritP- &
Initial: none

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualP- %’

Computed value: as specified

‘border-style’
Value: <border-style>P19%{1 4} | inheritP- 8

- 109 -

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

Initial: see individual properties
Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualP %7

Computed value: see individual properties
The 'border-style'p'109 property sets the style of the four borders. It can have from one to
four comgonent values, and the values are set on the different sides as for 'border-
width'? 1% above.

#xy34 { border-style: solid dotted }

In the above example, the horizontal borders will be 'solid" and the vertical borders will be
'dotted'.

Since the initial value of the border styles is 'none’, no borders will be visible unless the
border style is set.

'p. 110 p. 110

8.5.4 Border shorthand properties: 'border-top , 'border-right'
'border-bottom'® 1" ‘border-left'? %, and 'border'P- 110

'border-top’, 'border-right', 'border-bottom’, 'border-left'
[<border-width>P 1% || <border-style>P 1%° || <'border-top-

Value: color'>P- 198 1 | inheritP-%°
Initial: see individual properties
Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualP %7

Computed value: see individual properties

This is a shorthand property for setting the width, style, and color of the top, right, bottom,
and left border of a box.

hl { border-bottom: thick solid red }

The above rule will set the width, style, and color of the border below the H1 element. Omit-
ted values are set to their initial values® 2’. Since the following rule does not specify a bor-
der color, the border will have the color specified by the 'color'P-204 property:

Hl1 { border-bottom: thick solid }

‘border’
_ [<border-width>P1% || <border-style>P %% || <'border-top-
Value: color'>P- 1% 1 | inheritP%°
Initial: see individual properties
Applies to: all elements

-110-

c
3
]
o
c
@
£
E
(o]
¥]
@
o’
9
g

— &8 Box model —

Inherited: no
Percentages: N/A
Media: visual %’

Computed value: see individual properties

The 'border'? 110 property is a shorthand property for setting the same width, color, and
style for all four borders of a box. Unlike the shorthand